
// MODULARITY, BUG //
An Anthropological Examination of
Two Core Computer Science Ideas
David Gray Widder, Carnegie Mellon University
2023 Meeting of the Society for Applied Anthropology

A bit about me, and what I’ll talk about today…
I’m a Doctoral Candidate in the School of Computer Science at a top tech
school named after noted union crusher and philanthro-capitalist Andrew
Carnegie and his banker.

I’ve used ethnographic methods (eg, participant observation, interviews,
workshops, etc) before at NASA and Microsoft Research. But at Intel Labs, I
was mentored by anthropologists Dawn Nafus and John Sherry, where I
learned to theorize my findings more deeply.

Today, I’ll problematize two core constructs in computer science from an
anthropological perspective:

What does Software Modularity do to ethics?

What is a Bug?

Discussing this work with my Software Engineering colleagues can be
awkward but productive!

Modularity is a technical and social practice
that makes it easier to disavow harm.
The ethos of Software Modularity is:

A technical practice: users of your module need only understand
its external interface but not internal workings, minimizes friction
in reuse of “general purpose” code bits

A social practice: allows “bracketing off” relations outside the
module, allows division of labor and supports an imaginary of
how organizations ought to be organized

Software systems are composed of existing modules, but
developers

Rely on upstream datasets and “fundamental” models, but
disavow and rarely scrutinize their flaws

Release what they build openly, for anyone to use for anything
downstream, while disavowing these uses

Dataset of Faces

Facial Recognition
Model

Facial Recognition
Doorbell

More basic capabilities

More specific uses

Participants accept responsibility for their module, but not how it is used.

Technique to
regularize model

accuracy

Model “benchmarks”,
“showcases”, “demos”

VR Training Software
for Department of

Defense

“a procedure […] a new way to optimize your machine learning model and depending on
the data set you use, the application domain you pick can be potentially

endless”

“nothing that would concern me [except] general ways in which you can
abuse machine learning.”

“there is a very little interest in the […] the meaning of translation, but
rather [more interest in] the performance numbers”

“an engineer working [in the] machine translation area, he or she is
aware of […] the bias”

“It’s a concern to me because there could be flaws in the code, security risks, quality
risks, and effectively, if anything goes wrong, it looks bad on us.”

“We’re not going to have a random [person] buy our products and begin using it.
There’s always going to be some level of […] customer qualification”

 “I get to turn a blind eye to certain social aspects, because we have program
managers that tend to be the buffer [between us and the user]”

More basic capabilities

More specific uses

Lucy Suchman helps us Locate Accountability.

Responsibly developing tech must be “a boundary-crossing activity,
taking place through the deliberate creation of situations that allow
for the meeting of different partial knowledges”

Requires a shift “from a view of design as the creation of discrete
devices, or even networks of devices, to a view of systems
development as entry into the networks of working relations”

What holds ethics together is outside of the modularized supply
chain: personal and company reputation reputation concerns,
delivering value to end users, seeing them as people.

What if we thought of a chain of modules as something that enables
a view from somewhere, to see where action can take place?

This situates even relatively “general purpose” AI libraries or
frameworks in the context of the downstream harms they potentiate
or constrain.

Three Ways Forward…

Strengthen module
interfaces?

Bidirectional communication, thicker
social ties between module creators

and users.

Accept and leverage opportunities for
partial control, even if not complete,

such as ethical licences.

“Value Chain” metaphor

Work within the
modules?

AI Ethics Interventions (model cards,
datasheets, toolkits) must delineate

labor, support appending partial
knowledges

“supply chain” metaphor

🔥 Reject modularity? 🔥

Radically reimagine software

development. Build relations first,
technology secondarily, scalability

last if at all.

Distinctions between software
producer and user soften or dissolve.

Indigenous Data Sovereignty, and
“critical technical practice” (Agre

1997)

Responses from Software Engineering Professors
“You may have well told me Jesus isn’t real”

“Can you modularize ethics?”

Modularity as dominant ideology, subsuming and organizing other
concerns like ethics

“Where does it end?” Can you not use compilers? Existing hardware?

“Modularity ‘manages complexity’. How else would we build large
systems?”

Push towards scale. Assumption that software must be built.

Are there structures for the production of software that satisfy needs of
modularity and relational approaches address?

“Working misunderstandings” borrowing from legal anthropologist
Paul Bohannan

🔥 Reject modularity? 🔥

What is a “Bug”?
Ongoing work with Claire Le Goues, a computer science professor
who does “Automatic Program Repair” research (can we make
computers fix their own bugs?)

Work often relies on testing new approaches against standard
benchmarks containing known bugs in a codebase.

Objectivity: P values, hypothesis testing, “science”!, quantify this

Bug is objectively definable, so that detection and repair can be
automated

But, researchers sometimes don’t agree on benchmarks.

Some think that benchmarks can be satisfied, but the bugs/ fixes are
not useful, and therefore push for human subject studies

"A friend worked on project creating a catalog of vulnerabilities for the federal
gov; they started w/ engineers but ended up having to bring in

epistemologists because no one could decide what constituted one and
where it started or ended. Bugs are social not technical things…”

“In my PhD dissertation, I defined a software bug as "any error or
flaw in the implementation of a software system that causes it to

produce incorrect results, exhibit undesirable behavior, or cause
unintended consequences”.”

“a deviation from intent”

"Seeing some good definitions being thrown around here, but as a seasoned engineer,
I cannot stress enough that bugs don't become bugs because they do something

unintended, they become bugs because they do something unintended that gets
caught or noticed.

All software is a complex tangle of executed intentions, riddled with problems. But the
‘bugs’ are the ones we recognize. We notice bugs into existence."

But, what is a “Bug”?
Formally defined, a mismatch between’s a software’s specification and behavior

But software is always underspecified, so lots of assumptions

In practice: no one writes comprehensive specifications, so its a “you know it when
you see it” type deal.

Framing problem of Charles Frake, complexity literature. You can’t specify the state
of the world and you can’t be exhaustive.

“Job security”

Often, people ended up talking about intent. -> Subjectivity!

The Epistemic Power to declare “Bug”
When something is declared a “bug”, it is a
statement that something is obviously wrong.

Whose subjectivity matters in defining bugs?

Managers, Developers, Customers

Not: other stakeholders subjected to the system,
or “users”.

Declaring a bug is an epistemic power move.

Epistemic Power: A person has
epistemic power to the extent she is
able to influence what people think,
believe, and know, and to the extent

she is able to enable and disable
others from exerting epistemic
influence. (Archer et.al. 2019)

Gender Bias Bug
Professor Margaret Burnett’s work recasts the
definition of bug to include nuances in the
design of software that might make it less gender
inclusive.

This is an epistimic power move to expand
common notion of bug to include things
important to those less likely to be software
engineers.

Uses personas to help engineers adopt the
subjectivity of people different than themselves.

Ethics bug
In my own work, I surveyed ~130 software engineers about their
ethical concerns. Some described how they raised concerns
about bugs that can cause ethical issues.

Eg: numerical error in crane simulation software might kill
someone: ethics bug

But some bigger things: like, “I work at a military contractor and
don’t like military uses of my tech”

Too big for framing of bug.

Definition of bug is situated! Depends on the power you have to
affect outcomes.

“And so when I brought that
issue up [...] they did a big

investigation”

“you’re actually asking to shut
down the business. [...] It’s not
really a concern you can raise.”

Takeaway:
I believe subjectivity can make software better via an improved understanding of bugs,
relationships to other software components, and ethics and representation in software.

I hope I have shown software development to be an interesting as a site of
anthropological enquiry, where the kinds of subjectivities, disputed meanings,
disagreements and power relations exist within CS, despite its highly rationalized,
technical mode of production.

davidwidder.me/supply-chain.pdf, to appear in: SAGE journal of Big Data & Society

I’d love to talk, connect, or give this talk again!  
dwidder@cmu.edu • @davidthewid • @davidthewid@hci.social • www.davidwidder.me

I’ll be at Cornell Tech in NYC in the fall, studying norms and privacy in AI.

Feedback and critique please! I don’t often get to present to anthropologists!

https://davidwidder.me/supply-chain.pdf
mailto:dwidder@cmu.edu
mailto:davidthewid@hci.social
http://www.davidwidder.me

