// MODULARITY, BUG //

An Anthropological Examination of

Two Core Computer Science Ildeas

David Gray Widder, Carnegie Mellon University
2023 Meeting of the Society for Applied Anthropology

A bit about me, and what I'll talk about today...

I’'m a Doctoral Candidate in the School of Computer Science at a top tech
school named after noted union crusher and philanthro-capitalist Andrew
Carnegie and his banker.

I've used ethnographic methods (eg, participant observation, interviews,
workshops, etc) before at NASA and Microsoft Research. But at Intel Labs, |
was mentored by anthropologists Dawn Nafus and John Sherry, where |
learned to theorize my findings more deeply.

Today, I'll problematize two core constructs in computer science from an
anthropological perspective:

What does Software Modularity do to ethics?

What is a Bug?

Discussing this work with my Software Engineering colleagues can be
awkward but productive!

Modularity is a technical and social practice
that makes it easier to disavow harm.

The ethos of Software Modularity is:

A technical practice: users of your module need only understand
its external interface but not internal workings, minimizes friction

in reuse of “general purpose” code bits

A social practice: allows “bracketing off” relations outside the
module, allows division of labor and supports an imaginary of
how organizations ought to be organized

Software systems are composed of existing modules, but
developers

Rely on upstream datasets and “fundamental” models, but
disavow and rarely scrutinize their flaws

Release what they build openly, for anyone to use for anything
downstream, while disavowing these uses

More basic capabilities

Dataset of Faces

v

Facial Recognition
Model

v

Facial Recognition
Doorbell

More specific uses

Participants accept responsibility for their module, but not how it is used.

More basic capabilities “a procedure [...] a new way to optimize your machine learning model and depending on
the data set you use, the application domain you pick can be potentially
endless”

Technique to

regUIarlze model “nothing that would concern me [except] general ways in which you can

aCcuracy abuse machine learning’”

“there is a very little interest in the [...] the meaning of translation, but
rather [more interest in] the performance nhumbers”

v

Model “benchmarks’,

“ShOWCB.SES”, “demos’”’ “an engineer working [in the] machine translation area, he or she is

aware of [...] the bias”

V “It’'s a concern to me because there could be flaws in the code, security risks, quality
. risks, and effectively, if anything goes wrong, it looks bad on us.”
VR Training Software ’ eE &
for Department of “We're not going to have a random [person] buy our products and begin using it.
Defense There’s always going to be some level of [...] customer qualification”

“l1 get to turn a blind eye to certain social aspects, because we have program

L managers that tend to be the buffer [between us and the user]”
More specific uses

Lucy Suchman helps us Locate Accountability.

Suchman: Located zecountabilities :n techaology procuction
=CATAC Anmauncabsliitina

Responsibly developing tech must be “a boundary-crossing activity, —
taking place through the deliberate creation of situations that allow Located accountabiliies in

for the meeting of different partial knowledges” :tefmrlnology PdeUCthﬂ

Requires a shift “from a view of design as the creation of discrete ““‘””mw:c‘w“m'”“"“’”m"‘
devices, or even networks of devices, to a view of systems S s e T R e
development as entry into the networks of working relations” LI ?f:f?;%;%”a";f:?mﬁ: f.n“Em}“

Keywords
Snated knowledges, acocumedlity, desion prectice

What holds ethics together is outside of the modularized supply
chain: personal and company reputation reputation concerns,
delivering value to end users, seeing them as people.

What if we thought of a chain of modules as something that enables
a view from somewhere, to see where action can take place?

This situates even relatively “general purpose” Al libraries or
frameworks in the context of the downstream harms they potentiate
or constrain.

Three Ways Forward...

L

Work within the
modules?

Al Ethics Interventions (model cards,
datasheets, toolkits) must delineate
labor, support appending partial
knowledges

“supply chain” metaphor

Strengthen module
interfaces?

Bidirectional communication, thicker
social ties between module creators
and users.

Accept and leverage opportunities for
partial control, even if not complete,
such as ethical licences.

“Value Chain” metaphor

% Reject modularity? ¢%

Radically reimagine software
development. Build relations first,
technology secondarily, scalability

last if at all.

Distinctions between software
producer and user soften or dissolve.

Indigenous Data Sovereignty, and
“critical technical practice” (Agre
1997)

Responses from Software Engineering Professors

“You may have well told me Jesus isn’t real”
“Can you modularize ethics?”

Modularity as dominant ideology, subsuming and organizing other
concerns like ethics

“Where does it end?” Can you not use compilers?¢ Existing hardware?

“Modularity ‘manages complexity’. How else would we build large
systems¢”

Push towards scale. Assumption that software must be built.

Are there structures for the production of software that satisfy needs of
modularity and relational approaches address?

“Working misunderstandings” borrowing from legal anthropologist
Paul Bohannan

% Reject modularity? ¢%

What is a “Bug’™? *

Ongoing work with Claire Le Goues, a computer science professor
who does “Automatic Program Repair” research (can we make
computers fix their own bugs?)

Work often relies on testing new approaches against standard
benchmarks containing known bugs in a codebase.

Objectivity: P values, hypothesis testing, “science”!, quantify this

Bug is objectively definable, so that detection and repair can be
automated

But, researchers sometimes don’t agree on benchmarks.

Some think that benchmarks can be satisfied, but the bugs/ fixes are
not useful, and therefore push for human subject studies

David is moving to @davidthewid@hci.social
@davidthewid

.@clegoues and | spent the last 45 mins in lively conversation, primarily
arguing what a software "bug" is.

Q: #SoftwareEngineering practitioners and researchers:
How would you define "bug"?

3:02 PM - Sep 19, 2022

Ll View Tweet analytics

5 Retweets 5 Quotes 13 Likes

n

2

4

Pal

n

D2

hEps Mwiter con Name

S

k3

what is bug tweets
File Edit View Irsert

e @ T 50% -~

$

w b &
Format

Data Tools Extensions Help

% 0. .00 123 Defaul.. ~

- (0

v fx https://twitter.com/moarbugs/status/15720303273962086437s=2081=JBQW2E

8 < 2
Twitier Hande Link

2 Jessica Colrago w‘mw

3 Es Braziel Dstrasel Diips vitier con Reply

4 Rotan Padiye @moarbugs Bilzavitiercon Reply

2 Clabe Ly Quum (viopoues Ll iyt sans Reysty
6 Michael Hlon @michaeihilon hilge Iviliercon Reply
7 K Nexandria By @_zetetic__ Dilgs vitiercon Reply

& Frank Elavaky @FrankElavaky Digs vileccon Reply
9 Meredth Whitik @mer od¥h Niios ivitier con Reoly

10 Darwes Nafus @dowenafus Bligs vilieccon Reply

12 Suket Vienkatage @Sukvt Biiza vilier con Reply
13 tan Sweet @completelysou hilpsIvitierson Reply

14 Rotbie @ecavensmpdne Miga vilieccon Reply
15 Jacques Carette (iicarett2 Reply
16 Robtbie Qecavenewsan: M4 Iy e Lo Reply

17 Jugen Vi @urgemvings Dtips viliercon Reply

18 Jacques Carete Qijcarett2 Digs Wiec <o Reply

19 Jugoen Vinu @urgenvings Dilpsvitiercon Reply

20 Jacques Carette (Qijcarett2
21 Michael Coblere @mcoblens bitpsIvitiercon Reply

2 M.me Digs v con Reply

23 Jacques Carette @ycarett2 bilssvitiercon Reply

24 Robbée MM'QA'BM’Q!M

25 ¥l Cocht Geramechacs hilgsvilieccon Reply
26 Sherami(rshnay (IShrramiOMUnt NIz viieccon Reply

27 Joo Gibbs Polt: @ioepolts bttes.vitiercon Reply
28 Ant Yerkes Qocozacchiwira DS Iver con Reply

29 Aax Rothus ARt bites.vitiercon Reply

30 Shvibkanth, NC. | shvibanth _nc DI Ivileccon Reply

31 danny “disco” me @hipatersiactron hilos Ivitiercon Reply
32 Professional Mar (Dalispiritseve Digs Ivitier con Reply
3 Ezabe®™ Dinels @eadinela bilss hvtiercon Reply

€

F

Reply or Quote TComment

“Q: are privacy Baues over taled about a8 “Sugy* T

ik what do you mean, moet of the time they are the fealures beng developed. <l sigh>

Q does word "bug” have salence in design/ design research?”

TACS 3 DOOT QUESHION, | OITT NO ADOUT “TUPS™ 1N THE COSIHN FESEATN CONIENT 31 3R NOT SUNe ¢ |
gots thrown around in deskyn more broadly

In my PO dissertation (Mips:irohan padirye org/fleaphd-dissertation pdi.), | defined a
software bug as “any erree or flaw in the implemertation of a software system that causes
it to produce incorrect results, exhibit undesirable behavice, or unintinded
consequences”.

“colloquiabsm refoerring %0 2 mistake In 3 program’'s soerce code that leads 1o undesired behavior

w o vm v fafurw uf ey Ml ” s—“cuwmh‘mkiwcﬂww
So, ke using Colsus? W w W
a deviation from intent

Seaing some pood definiticns being thrown around hete, but &3 & seascned engaser, | cannot

Aress encugh Bt Bugn dent become bugs because hey do something usintended, By become
MWM&MMMQ&W&M

Al scltware 4 0 whex ungle of fed irtens fiddied with problems. Bu the "Sugs” are
he 0fes we recognize. Wi notice Bugs into exislence

R doesn’t do what we meart £ Y0 do.

Fve done UX studies whers “is £ & bug o is £ & featun® was 1otally resl-- not & jole. | reported
Bugs that tumed out 10 be womeons’s belel about what & should do.

Why s this a useful dscusson? Every org has its own process. and what matiers s not whather
something Is called a bug but whether it is prionticed fr foong.

Designer: “The buion is red. It should be green * Engheoer: “The spec doosn’t sar what color &
should be. Not a bug *

Designer: "It looks bad. Fixit*

Manager 10 engineer: “Jus! get it done.”

OFf course. & might have ended: Manager %o : "Sorry, we're shipgéng Somamow. and If you'd
wantod £ green, you shouM have sakd 50 earker Fiie an Issue in the issue trackes” | dont Sink s
worh arguing whether that was a bug. Software dev. ik 3 human process 1
[relpying 1o Coblenz] But caly when we deam something 10 be & “dug® 40 we lorepround s
exislence and the Iact that me can'should act on it Bx & ignore it, note £ down, “Its actualy &
foatire.* olc.

A soltware Bug” is any lime the program does not mest the specfication

[replying %o Robbée] This isit, this is THE defintion,

Medontically, sodeo with mno wpeo hes no bugn

Roalsticaly, all software has an impicit. undocumented spec. That spec changes over tme as
pocpie’s expectatons charges.

[reping 1o Carette] <3

This is he Book | e 10 relrence any Seme | Lk abou software quality assurance, But 'm Biased
bocause Bl laught my colbge class on software Qually assurance.

DS 00 aCm Crgfdabook 30 55553019418

[replying % Jacques| Much code grows By neiher rhyme nor reason and 50 its beharvor is

pent from the ddm.tdmcodohu-ﬂm There is no oec. Not oven
mmbu'nmnq..—] can grow. Only accodentasd
wss” 15 10 be expected

Thats why | e @AndreasZeler’s empirical defintion beter; frst thare's a (subjectively)
cbserved faliure. then thees is a search for Pe defect b code Pal causes £ and hen Pe
i Pt t wos indeeda Dug®, If the falure & nov avoded. No need for specs.

[replying 1 Jusgen] If hereis a “alure”, then calling La bug s easy. I's much hader when Pe

Software succoeds Dut fetums an answer that is found 10 be subjectively unexpeded. is that a

Bug? This happens in resewch software all the tme.

[mbMIMM1WQWWbM Good question. Especially for
1do 1 DOCOi 15 voioe B expectatons (specify) such that we can efher

change the spec or the coce whan they disagroe. but not Just “because”

Uniortunately that is not » realstic sxpectation for sefware in the wikd

[replying 1o Jusgen] Worked at cne of those “software n he wild”™ companies for 2 long tme. Its

Ipiol spec was simple: itdoes ‘symbolic math'. But chen users would report bugs, and the

POACtON wirs “won " with a long conmvoluted explanition based on 2030 year dd

-. ‘wl‘.”.m....

... Much worse were the harors comeimed in the NAME of ‘usabiity’ But that wern completely

unusable (and not useful) thiny glzmos Pat made for Jretty demos.

[replying %o Jacques, 15] Aso, some aspects of e “spec” will not have been congiderad “What

happens whan the user doms X7° “Oh, | ddn Bink of hat Wel, let's say the softvare should do

Y "Wel, & currenty does I.° s that 8 bug? Who cares? The qu = whather they decde 1o

change it

[replying 1o Michae] What f here are multiple stakehddens with cpposing points X view? Abug

for one user is Not a bug for the other..

[repiying %o Alcides] N've seen stuations where mulipl developers on B same Bam s encugh,

never mind dferent stakatoldery! Though indeed when Iy contradictions between stakeholders,

those bugs ace thomiest

freciyving %o Michael 21) Beravior outside of the soec & undefined. When a stakenolder's

expeciations don't akgn wilh the beharvior, then you reine the spec.

1 generally refer 10 3 “bug” 55 any tme e code does'l match e requirement of spec. | also tend

0 profer “dedect” over Tug' It was saser % nhoduce eflect 10 descrbe as actus engineening

masiep than 10 axchude requirement oversghts from b term Sug”

Pretty sure @AndreasZeller wiote a book about it

When a8 user complans and one of the developers agmes he stale shouldnt have been
reachablie by the code thatway.

any Sme expectations are defied in a bad wary, It's a beg.

MO, 8 bug is an nstance o when the software does not AN the stated or implied needs of its
siakaholders, often with regands 10 funcBonal sustabiin:

Researcher: 1 or more LOGNON-LOC that does not adhere 10 the intended requessment.
Practtoner: The addtional eflort regquired 10 close my pull request.

Where efort may be:

1.4 or « LOC or NondOC

2. Time (s) V to claim not iy problem

3. Do nothing Ndeprecales sometime

when he code makes me nad

)tk & agree most with The answers about deviaton rom axp w5 ot
1 offer 8 possitie alecrating)

Job secunty

Mamatch b spocianion | not expliot) and implementation

Dafirdiady e anin bk 04 debarsna and the e satad detritan it A rveasTalewr s ot

“In my PhD dissertation, | defined a software bug as "any error or
flaw in the implementation of a software system that causes it to
produce incorrect results, exhibit undesirable behavior, or cause

’» 9

unintended consequences’.

“a deviation from intent”

"A friend worked on project creating a catalog of vulnerabilities for the federal
gov; they started w/ engineers but ended up having to bring in
epistemologists because no one could decide what constituted one and
where it started or ended. Bugs are social not technical things...”

"Seeing some good definitions being thrown around here, but as a seasoned engineer,
| cannot stress enough that bugs don't become bugs because they do something
unintended, they become bugs because they do something unintended that gets
caught or noticed.

All software is a complex tangle of executed intentions, riddled with problems. But the
‘bugs’ are the ones we recognize.VVe notice bugs into existence.”

But, what is a “Bug™?
Formally defined, a mismatch between’s a software’s specification and behavior

But software is always underspecified, so lots of assumptions

In practice: no one writes comprehensive specifications, so its a “you know it when
you see it” type deal.

Framing problem of Charles Frake, complexity literature. You can’t specify the state
of the world and you can’t be exhaustive.

“Job security”

Often, people ended up talking about intent. -> Subjectivity!

The Epistemic Power to declare “Bug”

When something is declared a “bug”, it is a
statement that something is obviously wrong.

Whose subjectivity matters in defining bugs?
Managers, Developers, Customers

Not: other stakeholders subjected to the system,
or “users”.

Declaring a bug is an epistemic power move.

Epistemic Power: A person has
epistemic power to the extent she Is
able to influence what people think,
believe, and know, and to the extent
she is able to enable and disable
others from exerting epistemic

influence. (Archer et.al. 201 9)

Gender Bias Bug

Professor Margaret Burnett’s work recasts the
definition of bug to include nuances in the
design of software that might make it less gender
inclusive.

This is an epistimic power move to expand
common notion of bug to include things
important to those less likely to be software
engineers.

Uses personas to help engineers adopt the
subjectivity of people different than themselves.

Abi (Abigail/Abishek)

GenderMag: A Method for
Evaluating Software’s Gender Inclusiveness

ABSTRACT

In recent years, research into gender differences has established that individual differences in how people problem-sol
often cluster by gender. Research also shows that these differences have direct implications for software that aims to supp
, and that much of this software is more supportive cf problem-solving processes favor
by temales. However, there 1s almost no work considering how sottware practitioners
ofessionals or software developers—can find gender-inclusiveness issues like these in th
e devised the GenderMag method for evaluating problem-solving software from a gend
ethod includes a set of faceled personas that bring five facets cof gender difference resear
ersonas inio a concrete process through a gender-specialized Cognitive Walkthrough. C
ariety of practitioners who design software—without needing any background in genc
GenderMag method w find gender-inclusiveness issues in problem-solving soflware. C
he practitioners found were real and fixable. This work is the first systematic method to fi
ftware, so that practitioners can design and produce problem-solving softwzre that is mc

ptors

prescatation (e.g., HCI): User Interfeces; H.5.m. Information interfaces and presentation

roblem-solving software; GenderMag

Research Highlights

e Waedicree five facete af nriar oender racearch with tiee ta maleg’ and females® usage of problem-solving software
gender-inclusiveness issues in problem-solving

* 35 years old... .

ive facets.

inform and to validate various aspects of
1 and how gender of the evaluator interacted with

* Employed as Creative Writer...
+ Lives in Lisbon, Portugal. ..

' - Motivations: Abi uses technologics to
accomplish her tasks. She lcams new
technologies [only] il and when she needs aims to support diverse people in problem-solvi
o. . ~ioftware tend to be those best represented in softw:
~erusers’ perspectives often overlooked. Perhaps 1
h physical disabilities, but even that group rema
* Computer Self-Efficacy: Abi has low confidence about doing untamiliar roups’ uses of software remain barely consider
computing tasks. If problems arise ... she often blames herself... ', loyce et al. 2007, Power etal. 2012].

, Williams recently coined the <ypnumbered
are development practices that graphic of a

+ Attitude toward Risk: Abi’s life is a little complicated and she rarely has e form of GenderMag (Gender ~ Magnifying lens
e : T . T T i el U goes aboul here,-
spare time. So she is risk averse ahout using unfamiliar technologies that r evaluating problem-solving

might need her to spend extra tme ...

~ « Information Processing Style: Abi tends towards a comprehensive pt [Butler 1999, West and Zinunerman 1987] wh

information processing stvle ... she gathers information comprehensively to with biological sex. As West and Zimmerman def;
try to form a complete understanding of the problem before trying to solve it. nage their “situated conduct in light of normat

which they most identi’y. We especially emphas

* Learning: ... Abi leans toward process-oriented learning, e.g., tutorials, step-

by-step processes, ... She doesn't particularly like learning by tinkering with
software ..., but when she does tinker, it has positive effects on her

. understanding of the software.

Ethics bug

In my own work, | surveyed ~130 software engineers about their
ethical concerns. Some described how they raised concerns
about bugs that can cause ethical issues.

Eg: numerical error in crane simulation software might kill
someone: ethics bug

But some bigger things: like, “I work at a military contractor and
don’t like military uses of my tech”

Too big for framing of bug. “you're actually asking to shut

. down the business. [...] It’s not
Definition of bug is situated! Depends on the power you have to really a concern you can raise.”

affect outcomes.

“And so when | brought that Bug Foature Raison D'étre

Issue up [] the)’ did a blg gth oo e
investigation” ﬁ

Takeaway:

| believe subjectivity can make software better via an improved understanding of bugs,
relationships to other software components, and ethics and representation in software.

| hope | have shown software development to be an interesting as a site of
anthropological enquiry, where the kinds of subjectivities, disputed meanings,
disagreements and power relations exist within CS, despite its highly rationalized,

technical mode of production.

davidwidder.me/supply-chain.pdf, to appear in: SAGE journal of Big Data & Society

I'd love to talk, connect, or give this talk again!
dwidder@cmu.edu ® @davidthewid ¢ @davidthewid@hci.social ® www.davidwidder.me

I'll be at Cornell Tech in NYC in the fall, studying norms and privacy in Al.

Feedback and critique please! | don’t often get to present to anthropologists!

https://davidwidder.me/supply-chain.pdf
mailto:dwidder@cmu.edu
mailto:davidthewid@hci.social
http://www.davidwidder.me

