Trust in Collaborative Automation in High Stakes Software
Engineering Work: A Case Study at NASA

David Gray Widder
dwidder@cmu.edu
School of Computer Science, Carnegie
Mellon University
Pittsburgh, Pennsylvania

Alexandra Holloway
alexandra.holloway@jpl.nasa.gov

Jet Propulsion Laboratory, California

Institute of Technology
Pasadena, California

ABSTRACT

The amount of autonomy in software engineering tools is increas-
ing as developers build increasingly complex systems. We study
factors influencing software engineers’ trust in an autonomous
tool situated in a high stakes workplace, because research in other
contexts shows that too much or too little trust in autonomous tools
can have negative consequences. We present the results of a ten
week ethnographic case study of engineers collaborating with an
autonomous tool to write control software at the National Aeronau-
tics and Space Administration to support high stakes missions. We
find that trust in an autonomous software engineering tool in this
setting was influenced by four main factors: the tool’s transparency,
usability, its social context, and the organization’s associated pro-
cesses. Our observations lead us to frame trust as a quality the
operator places in their collaboration with the automated system,
and we outline implications of this framing and other results for
researchers studying trust in autonomous systems, designers of soft-
ware engineering tools, and organizations conducting high stakes
work with these tools.

KEYWORDS

trust; autonomous; tools; software engineering; ethnography; case
study; space

ACM Reference Format:

David Gray Widder, Laura Dabbish, James Herbsleb, Alexandra Holloway,
and Scott Davidoff. 2021. Trust in Collaborative Automation in High Stakes
Software Engineering Work: A Case Study at NASA. In CHI Conference on
Human Factors in Computing Systems (CHI °21), May 8-13, 2021, Yokohama,
Japan. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3411764.
3445650

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI 21, May 8-13, 2021, Yokohama, Japan

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8096-6/21/05.

https://doi.org/10.1145/3411764.3445650

Laura Dabbish
dabbish@cmu.edu
School of Computer Science, Carnegie
Mellon University
Pittsburgh, Pennsylvania

James Herbsleb
jim.herbsleb@gmail.com
School of Computer Science, Carnegie
Mellon University
Pittsburgh, Pennsylvania

Scott Davidoff
scott.Davidoff@jpl.nasa.gov

Jet Propulsion Laboratory, California

Institute of Technology
Pasadena, California

1 INTRODUCTION

Programming is increasingly conducted using tools which automate
previously manual actions: such automated tools can help software
engineers code [6], write tests [11], build [16], find bugs [26], re-
pair [31], and deploy [33] their systems (also see Figure 1). Program-
mers necessarily become more reliant on automated tools as they
build increasingly complex systems, and in response, designers ex-
tend the capabilities of tools, automating previously manual actions.
Past work has shown that trust critically influences software engi-
neering tool selection, use, and the decision of how much to rely on
such tools [8, 37-39, 41]. This work has not uncovered, however,
the factors which influence this trust in increasingly autonomous
software engineering tools, nor how trust — a highly contextual
and social phenomena - is developed and situated in context.

Gabriele Petronella @gabro27 - Sep 16 v
.'\ So this just happened:

- a bot found a vulnerability in a dependency
- a bot sent a PR to fix it

- the Cl verified the PR

- a bot merged it

- a bot celebrated the merge with a GIF

Figure 1: A tweet by an open source software engineer de-
scribing a fully automated bug fix. (permission obtained)

Research in contexts outside of software engineering finds that
an inappropriate amount of trust in automation can lead to negative
consequences (e.g., performance reduction as a result of compla-
cency [44]). We use a definition of trust from prior work: “the
attitude that an agent will help achieve an individual’s goals in a
situation characterized by uncertainty and vulnerability” [23, 32].
Many things could influence this attitude, including one’s own in-
teraction with the automated system or associated artifacts, or inter-
actions with others about the system. In our context, too little trust
could lead engineers to, for example, spend valuable time check-
ing output from autonomously generated code which is entirely
correct or skip using the tools all together. In contrast, over-trust
on automated tools may lead to uncaught bugs, costing the loss of
a multimillion-dollar mission, the resources spent launching and

https://doi.org/10.1145/3411764.3445650
https://doi.org/10.1145/3411764.3445650
https://doi.org/10.1145/3411764.3445650

CHI ’21, May 8-13, 2021, Yokohama, Japan

developing it, and the personal reputations of those who created
it. To design tools which invoke neither under-reliance nor over-
reliance in their users, it is important to understand the factors
which influence this trust.

While much research has studied factors influencing trust in
automated systems, we uncover three important gaps in the litera-
ture. Firstly, much of this work has been conducted in a laboratory,
despite increasing evidence that trust is influenced by contextual
organizational and social factors which are best studied in situ [23].
Secondly, much of the work on understating factors which influence
trust on autonomous systems has been conducted on systems which
users cannot modify or inspect, used to achieve a narrowly scoped
goal, rather than autonomous tools with which they iteratively
collaborate with to solve a creative problem. Finally, this work has
not addressed influences of tool trust in the domain of software
engineering, where trust should be influenced by the nature of the
tools themselves and the ways they are uniquely integrated into
key aspects of the software development workflow.

Our paper works to answer the question: “How does soft-
ware engineers’ trust in an automated tool develop in a high
stakes context?” with a ten-week multi-method ethnographic
study of software engineers building an experimental technology
demonstration at The Center!, a site of the National Aeronautics
and Space Administration in the United States of America. We find
that software engineers’ trust in autonomous tools is influenced by
four primary influences: Transparency, Usability, Social Context,
and Process factors. Our study makes three primary contributions:

e an understanding of how 16 factors, including contextually
dependent social and organizational factors, influence our
users’ trust in an autonomous tool which they collaborate
with continuously to solve a creative problem;

o trust framed as a quality the operator places in their collabo-
ration with the automated system, rather than a framing of
trust placed in the system in isolation; and

e a study of the deployment of autonomous tools in software
engineering, a context which has not been investigated with
respect to factors influencing tool trust.

We discuss implications for the following key stakeholders:

o for Human-Computer Interaction (HCI) researchers, we dis-
cuss implications of our framing of trust on future research
on trust in similar collaborative autonomous systems, and
how our results align with and fill gaps in the prevailing
model of trust in autonomous systems;

o for software engineering tool designers, our results can help
design tools which are and will be perceived as trustworthy;

o for software engineering organizations, our results can help
foster socio-organizational conditions in which trust ex-
change (i.e., social interactions where people exchange per-
sonal trust judgements) can easily occur.

2 RELATED WORK

2.1 Trustin Algorithms and Automation

As algorithms have proliferated into more aspects of life, there
has been an increasing volume of research on how they are used,

1Pseudonym given and some details changed to preserve anonymity.

Widder, Dabbish, Herbsleb, Holloway and Davidoff

factors that influence trust, and system design that increases trust.
Much work on trust in automation been conducted in laboratory or
contrived settings, thus unable to situate organizational and social
factors in context. In 2015, Hoff and Bashir reviewed 127 studies to
update Lee and See’s 2004 study of trust in autonomous systems [23,
32], and to build a model of factors influencing trust in autonomous
systems. Their model identifies three layers of trust: dispositional
trust (e.g., culture, age, personality), situational trust (e.g., riskiness
of task, complexity of the system, subject matter expertise), and
learned trust (e.g., system performance, preexisting knowledge of
system). As the authors themselves note, however, much of the
empirical work focuses on a narrow set of systems (e.g., combat
systems), and call for a more complete examination of diverse types
of automation in real-world environments. Additionally, Scaefer et
al. performed a meta-analysis of quantitative factors influencing
trust in automated systems, and found the need for further study
on the role of the human operator and of organizational dynamics
such as team training in trust development.

In the field of HCI, there’s been interest in user perceptions of au-
tomated systems, however, a majority of this work removes or does
not consider contextual influences on trust. For example, Rader et
al. conducted an experiment to investigate the impact that different
ways of explaining Facebook’s news feed aggregation algorithm
to participants had on their judgements of its trustworthiness [45].
They found that explanations helped users understand how it works
and how much they could control it, but that explanations did not
help users evaluate the algorithm’s correctness, consistency, or
sensibility. Kizilcec studied the effect of different levels of trans-
parency on students’ trust in an algorithmic grading system for an
assignment in an online course, finding that transparency increased
trust up until a point, after which adding more transparency eroded
trust [27]. An experimental study by Binns et al. evaluated users’
perceptions of justice in algorithmic decision making in different
scenarios, and found that the facts of the case mattered more to
participants than the explanations they were given [3]. Parasura-
man and Miller conducted an experimental study on the effect of
an autonomous system’s etiquette on pilots and non-pilot’s trust
in a flight simulator task, finding that good etiquette improved
trust [43]. Experimental studies like these can precisely quantify
the relationship between participant trust and specific manipulated
factors, but certain important factors which may affect trust depend
on a complex relationship between users and their environment
and their life use cases [23].

A set of recent work in HCI and ML on fairness and accountabil-
ity of machine learning provides evidence for the strong need and
increasing demand for information on algorithmic and autonomous
systems in use to better support developers, organizations, and
policy makers. Veale et al. asked public sector machine learning
practitioners about their attitudes on fairness and accountability of
machine learning in high stakes settings (i.e., justice, taxation, child
protection) and found that current research on the fairness and
transparency of these algorithms was removed from the practical
organizational and realities of where they would be applied [55].
Holstein et al. conducted interviews and surveys to understand prac-
titioners’ needs and challenges in developing fair machine learning
systems, identifying the need for better understanding of how sys-
tems are used in context [24]. This work highlights the need for

Trust in Collaborative Automation in High Stakes Software Engineering Work

more ecologically valid studies of trust in autonomous systems, and
ethnographic work in complex organizations to uncover factors
which may not reveal themselves in contrived situations.

In addition, much of the previous work on attitudes towards
algorithmic systems has focused on user affect towards algorithms
which they cannot modify or have extended interaction with, rather
than algorithmic tools designed to collaborate with users to gener-
ate a solution to a goal. Eslami et al. evaluated the effect of different
explanations of an online advertising targeting algorithm on 32
participants recruited using Craigslist (classified advertisements
website), and found that they preferred explanations which were
interpretable, non-creepy, and linked specifically to their identity,
but were then disillusioned with imperfections [18]. Six of their
participants discussed trust, but the authors did not systematically
analyze factors which influence trust. Again, the laboratory setting
of this study allowed the authors to administer carefully designed
tasks, but also poses a threat to ecological validity. Work by a similar
set of authors investigated the perceptions that online users have
of Yelp’s review filtering algorithm, and found that (dis)agreement
with this algorithm is determined largely by whether users stand to
gain from the algorithm’s filtering decisions, and that some users ex-
ploit transparency to defeat the filtering algorithm. [19]. We believe
more research is needed to evaluate factors which affect trust in
these complex, generative, and collaborative autonomous systems.

Finally, there are surveys of factors influencing trust to inform
the design of physical robots. For example, Desai et al. surveyed
literature to inform trusted robot design, and conducted a web ques-
tionnaire to evaluate trust in a robotically parked car in different
hypothetical scenarios [14]. Hancock et al. performed a quanti-
tative meta-analysis of studies measuring trust in human-robot
interaction under different experimentally-manipulated conditions,
and found that a robot’s task performance was the key influence
of trust [21]. In contrast to this work, we study a non-embodied
system in its real life context.

2.2 Trust in Software Engineering Tools

To our knowledge, there is little work examining factors which lead
software engineers to trust tools. There has been work, however,
which underscores the importance of trust in determining other
software engineering outcomes. Murphy et al. found that develop-
ers are more likely to use refactoring tools when they trust them, but
did not examine factors which may lead to this trust [39]. Niedober
et al. examined factors which affect pilots’ and engineers’ trust in
an autonomous ground collision avoidance system throughout its
development [41], but did not study engineers’ trust the tools used
to develop the system. Christakis et al. found that software engi-
neers find program analysis tools difficult to use when, for example,
they have inappropriate default settings, or are not used by the
engineer’s whole team [8]. The study did not measure trust specifi-
cally, but did suggest that cryptic error messages and false positive
errors lead to decreased trust in the tool. Devanbu et al. found that
software engineers tend to form beliefs from personal experience
rather than from empirical evidence [15], and that these beliefs can
originate from trusted peers. There is also quantitative evidence
that projects with members which have previously abandoned a
continuous integration tool on a past software project are more

CHI ’21, May 8-13, 2021, Yokohama, Japan

likely to do so on a new project, and lack of trust in the continuous
integration tool may explain this effect [62]. Finally, a two-page
position paper suggested possible factors which might lead to in-
creased trust in software engineering recommender systems [37],
based on studies of the adoption and use software engineering rec-
ommender systems, [38, 56], but the goal of the underlying studies
was to investigate processes affecting their adoption and use rather
than factors which lead engineers to trust them.

3 SETTING
3.1 The Center as an Extreme Case

Our study is set at The Center, a site of the National Aeronautics and
Space Administration in the United States of America, which builds
and operates planetary robotic spacecraft. The Center’s history
includes successful, multimillion-dollar Earth orbit and deep space
planetary exploration missions, positioning it as a High Reliability
Organization (HRO): a large organization executing work with a
high possibility of, but little occurrence of, dramatic failure [47, 48].
The authors observe three primary qualities of HROs which The
Center exhibits [9]. Firstly, a deference to expertise and past experi-
ence [60]: we observe that the experiences of “old timers” and their
“war stories” (terms used by participants) include views about the
right way of doing things, heavily influenced by what has worked
in the past, are respected. This deference is also ingrained in less for-
mal ways: hallways and gardens are adorned with chronologies and
technical drawings of past missions and commissioned art inspired
by them, and walls are hung with spare spacecraft parts within
arms reach. Secondly, an inability to rely on trial and error as an or-
ganizational learning strategy [60]: space missions are necessarily
“one shot”, and we observe that consequently, The Center exhibits
a conservative ethos to minimize risk, adopting new ideas only
after careful study. Finally, a preoccupation with errors when they
do occur [7]: for example, we attended an exhaustive root cause
analysis presentation for the failure of a planetary rover which had
vastly exceeded its designed life. This failure was not viewed as
shameful, but this presentation was attended by units across The
Center in order to prevent future similar failures. Yin et al. explain
extreme cases as case studies which deviate from theoretical norms
or usual occurrences, but whose extremes may reveal insight about
normal cases [65]. We position The Center as an extreme case: we
expect the extremely high stakes nature of the work, and the associ-
ated high reliability organizational culture to make factors affecting
trust, and linkages between these factors and the culture, unusually
salient and available for study.

3.2 Chief and its Autocoder

This study focuses on factors which affect engineers’ trust in Chief?,
a control software framework designed to help build software for
space missions. Central to Chief is the “Autocoder”, a determinis-
tic (i.e., rule-based [22]) autonomous system which generates low
level C++ code from a more abstract XML input file created by a
software engineer. The generation rules were created and vetted
and experienced control software engineers to ensure they do not
themselves introduce errors.

2Pseudonym given and some details changed to preserve anonymity.

CHI ’21, May 8-13, 2021, Yokohama, Japan

Engineers interact with Chief iteratively (see Figure 2): they re-
fine their XML input to iteratively create the Autocoder’s output
as they implement new components, act on new ideas, or find and
fix bugs. The engineers can create the XML for this autonomous
system in one of four ways, each with downsides. Most use a di-
agramming software package called MagicDraw® to graphically
architect Chief systems (Old Way), a tool perceived as sluggish,
complex, and error prone. However, after hearing many problems
from users about MagicDraw, the Chief’s creators built Chief Plus,
a modeling language that is in early prototype stages with one test
user (New Way), but which had not yet seen widespread adoption,
leading some to approach it with caution. Others built occasionally
error prone tools to generate XML (Ad Hoc Way), or wrote input
XML by hand (Tedious Way) a cumbersome process which some
participants report will inevitably lead to errors. Chief is made up
of different parts, including a central framework which connects
different components, a standard library of core components, and
other components contributed by teams external to Chief’s main-
tainers (implications of this discussed in 5.4.3). Chief is “Mission
Proven” (see 5.4.2), having been used on at least one previous mis-
sion, a status which carries weight. To the pride but also stress of
its creators, Chief has been chosen as the control system software
package on an upcoming space mission.

Interaction met

Old way:
Draw architecture
with MagicDraw

Iterate

- Integrate into rest of system
- Discuss with teammates

- Design a new component

- Make architecture changes

Tedious w
Write XML
architecture directly

Ad Hoc wi
Build custom tool to
generate XML
New way: Autogenerated
Write architecture Autocoder Code
using Chief Plus

Figure 2: Steps to use Chief’s Autocoder

4 METHODS

To maximize ecological validity to be able to uncover organizational
factors, we conduct multi-method ethnography, “a qualitative empir-
ical approach suited to understanding people and cultures, and their
associated social and work practices” [52]. White et al. [61] cites
Willis et al. [63] to discuss the relationship between ethnography
and case study research: “used within an interpretivist framework,
‘researchers do not seek to find universals in their case studies.
They seek, instead, a full, rich understanding (verstehen) of the
context they are studying.”” Accordingly, we adopt this interpre-
tivist paradigm (i.e., [34]), believing that our results and the way we
interpret them is inextricably linked to the setting in which they
were derived, and consequently, that care and further study should
be undertaken before attempting to generalize our results to other
settings.

3https://www.nomagic.com/products/magicdraw

Widder, Dabbish, Herbsleb, Holloway and Davidoff

Our multiple methods allow us to investigate Trust in Chief
in diverse contexts: those with long periods of experience using
Chief (Semi-Structured Interviews, Sec 4.2), those new to Chief
(Workshop Group Interviews, Sec 4.4), experienced users using a
new Chief component for the first time (Think Aloud User Studies,
Sec 4.3), and work practices of experienced Chief developers in situ
(Participant Observation, Sec 4.5).

4.1 Recruitment

The team which created Chief was a partner in this research and en-
abled recruitment, providing access and introductions to personnel,
documentation, and invitations to meetings about Chief. The team’s
supervisor provided the first author with a list of people in The
Center who currently use Chief or had in the past. We then used
snowball sampling to recruit further participants recommended by
this first set, thereby building out a network of people who had
used, learning to use, develop, manage or advise on the develop-
ment of, or were otherwise associated with Chief. Participants at
The Center (see Figure 1) had a software engineering background
and were on a few different teams working on various missions.
The first author also built relationships with long time employees
of the The Center, who described its culture and practices, some of
whom had no association with Chief.

Years of experience...
P# Interview User Study on Chief inthe Center programming

1 4 v 3 9 12
2 4 2 29 34
3 v 3 3 15
4 4 3 3 10
5 4 3 3 15
6 4 v 2 2 6
7 v v 3 6 13
8 4 4 5 20 40
9 4 7 48 53
10 4 v 3 9 18
11 4 v 5 6 37
12 v 5 33 41
13 4 1 32 35
14 4 v 2 2 35
15 4 v 7 28 32
16 4 2 3 3
17 v 2 5 6

Average: 3.4 14.2 23.8

Table 1: Participant Information

4.2 Semi-Structured Interviews

The first author conducted semi-structured interviews on two occa-
sions to probe deeply into factors which mediate engineer’s trust in
Chief in a one-on-one setting where participants feel comfortable
to voice their unfiltered feelings [29]. The first were interviews with
as many past or current users of Chief at The Center as possible.
Topics included how engineers had learned Chief, how if at all
they taught Chief to others, and what barriers they had faced in
using Chief. The second set of interviews were conducted after the
conclusion of a user study (described in 4.3), after participants had
just used Chief Plus for the first time. Seventeen participants were
individually interviewed, and these participants had an average
of 3.4 years of experience using Chief, 14.2 years working at The

Trust in Collaborative Automation in High Stakes Software Engineering Work

Center, and 23.8 years of programming experience (see Figure 1).
In both cases the interviews were audio recorded with consent, and
interviewees were asked to reflect on aspects of their experience
which affected their trust in the parts of Chief they had used, often
by analogy or comparison to other software systems they had also
used.

4.3 Think Aloud User Studies

To study how participants formed initial (dis)trust judgements in
new tools, we designed and conducted think aloud user studies
(i.e., [40]) in which participants were presented with Chief Plus
(New Way), a new prototype way of interacting with Chief’s Au-
tocoder. We constructed three tasks in the Chief reference applica-
tion: an example system built for instructional purposes and as a
starting point for real world implementations. Each task required
users to replicate existing functionality in the new Chief Plus lan-
guage, with each one having less scaffolding than the last. Seven
participants were chosen because of their strong affiliation with
with Chief Plus’s pilot users, and thus likely to adopt it in the future
(see Figure 1). Participants were asked to think aloud as they com-
pleted these tasks, and with consent, their screens and verbalized
thoughts were recorded. One participant declined consent to record
so we only took detailed notes. Each participant took about an
hour to complete these tasks; Participant 8 did not complete the
third task. Users were subsequently interviewed about this first
experience using Chief Plus (see above).

4.4 Chief Workshop & Group Interviews

In the beginning of the data collection period, the first author partici-
pated in a three-day Chief workshop instructed by Chief’s designers
to 16 largely student participants. This allowed him to learn how
Chief worked to frame future inquiry, and to observe the designer-
instructors’ values surface through what they emphasised in the
training. The workshop also provided opportunities to interact with
four student groups working to complete a robot arm project with
Chief. The first author performed group interviews with each group
at the workshop’s conclusion, labeled WSA, WSB, WSC, and WSD.
Observations from the students provided a contrast to those from
the more experienced engineers employed at The Center.

A majority of the participants attended this workshop because
they intended to use Chief in satellite research at their home uni-
versities, except four who would use Chief as incoming interns to
The Center (group WSD). There were 16 total participants with
between three and five per project (and interview) group. Thir-
teen were undergraduate students, one was a Masters student, one
was a PhD student, and one was a staff researcher. Compared to
engineers’ average of 3.4 years of Chief experience (see Figure 1),
workshop participants had an average of four months of experience
with Chief, including four participants who had no pre-workshop
experience, and ten who had less than six months of experience.
Participants had considerably more programming experience: at
least one and a half years, a median of five years, and a maximum
of 15 years.

At the conclusion of the three day workshop, the first author con-
ducted group interviews with each of the four groups about their ex-
perience using Chief [2, 35]. Participants were encouraged to react

CHI ’21, May 8-13, 2021, Yokohama, Japan

to and build off of the thoughts of others, with the researcher offer-
ing minimal prompting to guide conversation. Interviews lasted be-
tween 13 and 30 minutes. Interviews were conducted out of earshot
from workshop’s instructors so that participants could speak freely
about their opinion of Chief and their own misunderstandings or
errors.

4.5 Participant Observation

Over ten weeks, the first author immersed himself in the develop-
ment processes of Chief. He met with many others to chat about
their work and experience at The Center and watch them perform
their work as a participant observer [53]. For example, the first
author observed team meetings to vet new Chief components, dis-
cussions about the impending start of project system testing, and
concerns over potential threats to launch target. These observa-
tions included people managing or advising on the development
of Chief, potential users of Chief, people familiar with similar soft-
ware, but also people unconnected to Chief to gather additional
context about the unique nature of The Center as a setting. The first
author took field notes and collected any written materials relevant
to these interactions, but did not record them in order to avoid mak-
ing participants feel uncomfortable. At one point, the author even
identified and proposed fixes for bugs in the Chief Plus system in
collaboration with its lead engineer. These interactions, undertaken
throughout the ten weeks, provided context, increased understand-
ing, and therefore confidence in the first author’s interpretation of
the data collected.

4.6 Data Analysis

Throughout the ten-week data collection period, the authors gath-
ered to discuss data and to memo intermediate emerging themes.
At the end of this period, the first author printed out and reread all
field notes, collected materials, and transcriptions of interviews and
user studies (101 pages total). To ensure he correctly recollected
important contextual details such as tone of voice, pace of dialogue,
and onscreen actions taken during the user study, he also reviewed
the interview and screen recordings (12.5 hours total).

The first author performed three rounds of iterative [58], the-
matic analysis on this data [5]. In the first round, an initial set of
themes was identified from the individual interview data through
a process of memoing and any reference to affect towards any pro-
gram were identified. We wrote up these emerging themes, and
presented and discussed them with participants to check resonance,
and to the other authors to check comprehensibility. In the second
round, references or allusions to things affecting trust including
those to non-autonomous programs which participants brought
up for the sake of comparison, were tagged with factors influenc-
ing trust. Given our definition of trust (“the attitude that an agent
will help achieve an individual’s goals in a situation characterized
by uncertainty and vulnerability” [23, 32]), we were attuned to
many different ways of expressing this attitude including direct
statements referencing system helpfulness or utility or trust itself,
reflections on causes of failure to complete a task, or tone of voice
or comments directed at the system while attempting to complete a
task. In the final round, these references to trust were systematized

CHI ’21, May 8-13, 2021, Yokohama, Japan

into the final 16 codes (see Figure 3), and the full dataset was coded
using this scheme.

5 RESULTS: WHAT FACTORS MEDIATE
TRUST IN CHIEF?

Our analysis revealed that four major factors influenced system
trust. These factors and their components are shown in Figure 3.
We find two major organizational trust factors (Social Context,
Process Based), and two major categories of factors related to the
developer’s experience of system itself (Transparency, Usability).

¢ Trust factors from an engineer’s individual experience

Transparency Usability
+ Feedback & Visibility - Bugs 5
+ Docs & Training Standards Conformant
+ Length of Exposure Intuitive Use :
+/— Sixth Sense - Complexity

—+
—+

Software
Engineer’s
Trust

Social Context Process Based

+ Endorsement + Institutional Investment :
¢+ Many Eyes + Mission Proven ‘
: +/—- Who Built It + Formally Tested
. - Betrayal + Safe Zone (inside)

Trust factors from Chief’s socio-organizational context

Figure 3: Factors influencing software engineer’s trust in
“« »

Chief with positive possible influence marked “+”, negative
influence with “-”.

5.1 Transparency

We observed that trust in Chief was influenced by an engineer’s
ability to understand Chief and its inner workings.

5.1.1 Feedback and Visible Internals. Many participants were not
content to trust Chief without first inspecting its internal workings,
and satisfying themselves that it worked correctly. For example,
one participant stated that Chief made it more work to check that
the system he produced with it worked correctly: “If you develop the
system without Chief, it would have been simpler to do. Chief is a large
structure, and to [use it] you have to understand how your code works
and how Chief works” (P12). Another participant described how
they had to wade through opaque code to get clarity: “The context in
which a port is called in is confusing. I only understood by reading the
autogenerated code to understand what is happening” (P4). Another
participant stated that his lack of knowledge of Chief’s construction
prohibited him understanding possible implications for him using
it: these quotes show Chief’s autocoder did not exclusively simplify
development by automating the previously handwritten code be-
cause the engineers were not content to trust this autogenerated
code they had no experience with, without manually verifying that

Widder, Dabbish, Herbsleb, Holloway and Davidoff

it was correct, thus adding an additional (and often time-intensive,
as participants note that this autogenerated code is often complex,
see also Section 5.2.3) step to build trust in the resulting system.
Another participant provided a contrasting example, stating that he
trusted open source tools more than Microsoft tools, because the
former do not provide “visibility into the source code”, underscor-
ing that understanding the internal operation by inspecting source
code is crucial to trust in our context. On the other hand, some
participants trusted their understanding of the inner workings of
Chief’s Autocoder enough to modify it, for example, Participant 3
modified Chief’s autocoding system. We observe that engineers in
our context see an understanding the internal workings of the tools
they use, and the output these tools generate, as a precondition to
trusting these tools.

We observed that frequent, descriptive feedback from Chief had
a positive effect on participant trust because it was commonly how
participants expected to probe Chief to learn about its internal
workings, and build trust that they had used it correctly. We ob-
served that Chief users wanted to not only trust Chief, but also
their ability to use it, in order to trust the code they generated
together. We observed that engineers expected feedback from Chief
Plus even if only to confirm that no errors occurred, as shown by
one engineer attempting to see if the code he had just written was
correct by compiling it: “Usually for things like this I'll ask Google.
But you can also ask the compiler, haha! Which I'll do now [compiles
their code] Okay what happened? Did it work? No return from the
compiler!” (P11). This was echoed by Participant 14, who further
explained that the lack of feedback during compilation made it hard
to know if progress was being made. This shows that feedback,
even when no errors occur, is a crucial way that participants build
an understanding of, and learn to trust, Chief’s inner workings.
Workshop students also wanted feedback to build trust in their abil-
ity to correctly use Chief: three of the four workshop groups found
Chief’s error messages not clear enough to find and fix errors they
made, for example: “[The XML compiler] doesn’t even tell you what
is exactly wrong. [...] You just change random things and if it works
its just works” (WSB). The perceived poor feedback and requisite
“guess and check”, “trial and error” methods (quoted from WSB)
added additional steps for work workshop students to build their
trust in Chief over time, because workshop students observed that
“random”(WSB) things fixed these issues, stopping them from learn-
ing what had solved the issue and consequently slowing their trust
of the result of their iterative collaboration with Chief. In contrast,
we observe that the more experienced engineers found the error
messages they encountered in the user study to be generally helpful
in pinpointing problems, suggesting that the link between feedback
and trust is at least in part a function of experience (see 5.1.4).

5.1.2 Documentation & Training. Relevant documentation, and
training which left space to have questions answered and provided
the rationale behind the instructor’s directions, helped participants
develop trust in Chief. We observed that in the inspection process
explained in Section 5.1.1, participants often had questions, and if
they were easily answerable from documentation, we observed that
this increased their trust. Reflecting on this process, one participant
commented on this: ‘T found the Chief User Guide very helpful, but
only after struggling for a while. I didn’t know how to express the

Trust in Collaborative Automation in High Stakes Software Engineering Work

questions I had in Chief language or how to effectively [...] search the
documentation” (P3). Workshop participants said that in absence
of instruction, checklist style documentation would be necessary:
“The process of [adding] components [...] was something that wasn’t
as obvious before [instructors P10 and P15] walked through how you
do that. When you don’t have that, and when stuff doesn’t work, you
need a checklist of things to go through” (WSC). Another group
described the build process for Chief projects as difficult without a
checklist style “cheat sheet” documentation: “The process without
the Chief cheat sheet thing, I don’t know how to explain it except
‘convoluted’. Having to go into mod.mk , change that, [...] then change
the makefile, then do make, then do ai.something or other, then get a
bunch of other files [...] then change something” (WSA). This quote
shows that the presence of documentation can make up for trust
lost due to other negative qualities of a system.

Some workshop participants stated that knowing the rationale
behind an instructor’s direction would help them build trust in
how they were told to use Chief: “If we had gone through that
makefile and said like ‘so this is how its working’ that would help
us understand the process of development so much better. Say like
‘make gen make, that’s doing this’, I feel like to some extent when
we’re doing development we don’t know entirely whats going on with
one of those commands, which makes it a little bit harder to look
for bugs, to know what might have gone wrong” (WSB). Similarly,
a different member of this group stated that being given a bigger
picture view of Chief from the outset would help them learn how
to connect smaller pieces: “Something that would have been helpful
for me at least was at the beginning if [the instructors explained] how
[components] played into the larger demo, but parts of the demo were
revealed over time and we’d have to figure out how to connect them
to each other. It didn’t feel like I saw the big picture until late last
night, and that was us on our own” (WSB). Finally, some workshop
participants did not interrupt their instructors to ask questions
for fear of upsetting a packed schedule: “There were way too many
technical terms that we didn’t understand [the instructors] just breezed
over it until you ask about it specifically. A lot of people don’t feel
comfortable enough to ask to go in depth, especially because we were
on a time crunch” (WSB).

5.1.3 Sixth Sense. Participants appear to acquire a difficult-to-
articulate “sixth sense” of which parts of Chief are trustworthy
or not, built up over time working on similar problems in similar
contexts: “You kind of need to just know which components are rock
solid and which ones you have to test and stuff” (P10). One specific
example was a technical decision about queue depths, the number
of messages that a Chief component will support before ignoring
further messages, where participants described using their sixth
sense to find bugs resulting from a poorly chosen depth: another
participant did not like having to rely on their sixth sense, and
suggested that some guidance on queue depths could be provided:
“When debugging this, many ports have queue lengths. But what is
the optimal queue length? Lots of trial and error. Perhaps there’s room
for [an official] way to tune queue lengths” (P4). We note that sixth
sense may itself be a consequence of experience (see Sec 5.1.4).

5.1.4 Long Exposure. Participants often cited the length of time
they had had to use, inspect, and evaluate Chief as a reason they
trusted the system. Less experienced workshop students suggested

CHI ’21, May 8-13, 2021, Yokohama, Japan

that they might be able to use Chief more confidently with longer
use. Participants often offered the the length of time they had been
using Chief as their first justification for why they trusted it: “[Do
you trust Chief?] Yeah, I've been using it for the past 2 years now”
(P1). This quote shows how two participants explained that in using
Chief more has increased their confidence using it, one saying: “/Do
you trust Chief?] Yes, I've used it a lot. The amount of experience
I’ve had with the tool has allowed me to be more confident in what it
does” (P7). The tone of voice in which such responses were given
was indicative as well. The matter of fact tone participants used to
relay the amount of experience they had had with Chief suggested
their trust should be obvious as a result of this experience, thereby
implying that if there were issues which should affect their trust in
Chief, they would have discovered them by now.

Workshop participants felt that more experience would help
them debug Chief in spite of its poor feedback (see also 5.1.1): “This
[error message] language is geared towards someone who is basically
using it every day. Like, this, the debugging especially, unless you
have experience you really don’t know what is going on. [...] If you
don’t have experience with it, there’s not really any way you can
actually know which random switch you have to make to make it
work” (WSB) This quote illustrates the converse: less experienced
workshop students, who have not had experience deciphering error
messages, trust their use of Chief less.

5.2 Usability

We also observed than an engineer’s ability to easily use Chief was
associated with trust in the system.

5.2.1 Standards Conforming. Parts of Chief which conform to
externally or internally codified or conventional standards were
trusted more, and that participants frequently compared Chief to
other systems to point out cases where Chief behaved differently
than the expected “standard”. One particular example participants
mentioned frequently was the way that Chief implements serializa-
tion, the method by which a system converts an object into a stream
of bytes to store the object or transmit it: ‘[What was hard when
learning to use Chief?] Probably trying to get my head around [it’s] s
concept of serialization. When you say serialization I think of JSON
and whatnot. That’s not what serialization is in Chief” (P9), show-
ing that Chief’s serialization does not align with their expectation
based on the common JSON format. Another participant specifi-
cally mentioned that the implementation of serialization appears
to also be internally inconsistent, i.e., implemented differently in
different parts of Chief: “One of the most difficult things about Chief,
not for me but for users in general is the Serialize infrastructure. The
consistency was switched up, and the Serialization stuff was difficult
to grasp” (P8), whereas another notes that a function in the seri-
alization infrastructure contains a “code smell” (i.e., a pattern in
source code of considered to pose maintainability issues [42]) by
having a Boolean parameter: “[Does Chief react in the way you’d
expect?] Well I guess there’s some aspects of the framework that are
a little strange and hard to use. One example that comes to mind
is there’s some serialization function that has a Boolean argument”
(P11).

Another example of a deviation from standards in the Chief
system is the way it handles buffers: “Buffer manager is a piece of

CHI ’21, May 8-13, 2021, Yokohama, Japan

code saying ‘give me a buffer’, but if you return them out of order
it will crash. No one who understands how a buffer manager should
work would expect it to behave this way. Once you understand it’s a
stack based buffer manger, that requires inverse order return. Once
you understand this caveat, fine. No one understands this caveat”
(P10). Other participants spoke about how using two different shell
versions within Chief is very confusing, and that there should be
a consistent standard throughout: “[Chief Plus’s build system] is
written in C Shell, which is an abomination. So if C Shell is gonna
creep back in, we’re gonna have this dual shell mode [another shell is
already used in other parts of Chief] which is gonna confuse me. We
should have consistency” (P10)

Other participants desired more clear standards to build trust
in their use of Chief, one engineer saying: ‘T don’t know where the
[Chief Plus] format is documented. For instance, XML has a required
format” (P14). Similarly, a workshop student spoke about an “un-
clear line” between making a component “active” or “passive”, but
which was presented by instructors as a choice with clearly defined
determinants: ‘T had to ask [about] the reasons it was supposed to be
active and passive. The servos should be active because the command
dispatcher was connected to it. But from the maps that we were un-
derstanding, it could have been passive. Having that line be unclear
kind of confused me in some aspects, because it can be passive in what
you’re doing, but because this could also happen, and because this
is also happening, you should make it active” (WSB). In summary,
participants trusted parts of Chief which behaved in accordance
with codified or conventional standards more.

5.22 Bugs. While systems which have many bugs may obviously
be trusted less than those with fewer, we observed an important
nuance: participants hated it when bugs surprise them, so they hate
“unknown bugs” much more than “known bugs”. Reflecting on the
new Chief Plus prototype, one participant describes unknown bugs
as “bear traps”: “Before I use [Chief Plus], I want to see it become
more mature. The rumors are there are a lot of bear traps to tiptoe
around, similar to as in MagicDraw” (P15), and another made refer-
ence to Donald Rumsfeld’s “unknown unknowns”: ‘T do worry that
that the core Chief components have not been unit tested to a large
degree. Some unknown unknowns” (P14). Another said he trusts
Chief because of the absence of unknown bugs: ‘T trust the Chief
Autocoder. I've been using it for 3 years, and in my experience I rarely
discovered a bug or issue” (P7). In the user study, one participant
discovered an unknown bug while reading Chief Plus’s source code:
“Oh look! There’s a comment here: ‘This line fails for no apparent rea-
son.” What?! [laughs exasperatedly]” (P10). Bugs still exist in Chief,
but participants seemed reassured when they knew where the bugs
were: “Yes, I trust Chief because [...] I have a good understanding of
its deficiencies” (P8). Another trusted Chief, despite the presence
of bugs: “[Do you trust Chief?] I mean, I think mostly. Although [...]
there’s still bugs in it” (P11). In summary: the presence or suspected
presence of unknown bugs has a negative impact on trust, but the
presence of known bugs need not.

5.2.3 Complexity. Highly complex Chief systems were trusted less.
Three participants criticised the complexity of MagicDraw, one say-
ing: ‘Tt seemed complicated to connect components to the topology
using MagicDraw. I don’t think I could have hooked that up myself,
if that was a requirement. Seemed to have lots of human procedural

Widder, Dabbish, Herbsleb, Holloway and Davidoff

steps you have to know to hook up things in MagicDraw” (P5). An-
other participant complained that frequently used functionality in
MagicDraw is buried seven menus deep. Another participant de-
scribed how he’d be more likely to trust a small system which does
fewer things well rather than an ambitious but complex system:
“The development of tools like Microsoft Word is focused on adding
more and more features, and making it more and more cumbersome
and hard to use, and not making sure that the basic features work. I
want the basics to be simple and fast and reliable and easy to use. I
don’t want multiple conflicting ways to do the same thing” (P11).

In the Chief context, another participant invited a simplification
of the code which results from the Autocoder: “To keep things simple
and fast is important. The autocoded code was way longer than it
[should be] in my experience as a realtime software developer, and
not the most efficient. The complexity of the stuff that is autocoded [is
bad], you write functions that get magically called from autocoded
things” (P12).

Complexity resulting from frequent context switches caused
workshop participants to be concerned they may make a mistake,
affecting their trust in their own ability to use Chief: “The number of
steps you have to go through to make even like the simplest component,
is pretty extreme. You have to touch six different files, and each one is
in its own directory almost. [...] That’s just a lot of tabs we have to keep
on switching through” (WSB). Another group agreed, suggesting
this may cause mistakes: “Having a lot of moving parts, that adds
to the potential of having bugs during that setup process. It makes it
more likely that when you’re doing all these different operations that
you’ll make a mistake somewhere, or have a directory that’s incorrect
or something, or forget a piece” (WSC), whereas workshop group B
explained how they similarly made mistakes this way: “if you end
up in the wrong directory, you mess something up. And have to redo
a lot of things” (WSB).

5.2.4 Intuitive Use. Chief systems which could be used intuitively
were more trusted. User study participants appeared to have a
sense of “the way it should work” when completing the tasks using
Chief Plus, which they were using for the first time: “Despite my
lack of knowledge about Chief Plus, for me it was intuitive” (P14).
Users explained that they trusted systems which react in a way
that aligns with their expectations, which they derive from their
past experience: “If you understand what you’re doing, GCC will
do what you expect. If you tell it to do something, it’ll do what you
say, I rarely worry about it doing something unexpectedly” (P10).
Other participants described “rituals”, undocumented capabilities
that departed from their mental models to achieve the desired func-
tionality out of a system: “The hardest part was teaching [interns]
MagicDraw, like the procedure for when you change the component
interface, you have to rebuild it in this way, do a clean, and rebuild
everything. If you want to compile with the kernel and such. The most
difficult part was the rituals you had to do with MagicDraw” (P16),
whereas others pointed out the amount of repetition required to do
simple tasks: “‘[There was] lots of repetition. Lots of generic ports that
usually go to the same place. It took a long time to add maybe 12-15
components. The ports that I really cared about didn’t take very long
to set up, but adding all the commanding and logging and telemetry
ports took forever. It’s slow to do things in MagicDraw. There’s just a
lot of repetitive motion” (P4). One workshop group said how buffer

Trust in Collaborative Automation in High Stakes Software Engineering Work

delays are set doesn’t align with “tradition”, only discovering how
after consulting a manual: ‘T would traditionally just use a buffer to
build a message and just send it. My first instinct would be to define
one in the function, then send it. But you’re supposed to define a single
buffer as a member and do various construction things to it. [...] I
don’t know how I would have learned that that was there, other than
reading a reference manual” (WSA).

5.3 Social Context

We observed trust in Chief was also dependent on other people’s
interaction with Chief, including team members, other users, or
downstream users of an engineer’s code.

5.3.1 Many Eyes. Systems and parts of Chief which had more
users, and thus “more eyes” checking them, were trusted more.
Participants presumed that having many users meant that many
eyes have checked the code or system, and report or help fix those
bugs, shown in: ‘T trust the bigger well established packages that lots
of people use more. You have millions of users acting as testers. The
more eyes the more I'd trust it to be solid.” (P15), and “When a lot of
people are banging on it, they [bugs] get discovered and fixed” (P11).
They also believed the reverse to be true: “T get the opinion that
[software tool] doesn’t have enough eyes on it to be trusted. [However,
another tool] works because it has a thousand eyes on it” (P10) This
was often spoken about in a way similar to “social proof”, as shown
by: “If other people have used it and not run into big problems, then I'd
trust it more” (P6), “[I trust this tool because of] how widely its used”
(P1), and ‘T trust the GCC compiler. Its had thousands and thousands
of users successfully using it” (P8), and they also mentioned open
source software specifically as a common case of the “many eyes”
indicator of trust, as shown in: “Tts open source. So you have multiple
people who know compilers looking at the code. So if there’s bugs,
they’ll usually put a patch in quickly” (P14) and “Having [this tool]
on GitHub and having the community be active and report their issues,
is the reason why I trust it” (P7).

5.3.2 Who Built It? The person or organization that built the code
or system in question was an important factor in participants’ per-
ceptions of its trustworthiness. These perceptions often reflected
participants’ past experience with systems built by that author, or
their personal experience interacting with the individual or team
who built it.

Chief, because it was built at The Center by some of our own
participants, was often trusted because of the participant’s close
relationship with those developing it: “[Do you trust Chief?] I guess
I do, because I work with very smart people who work on it” (P14),
and another had even helped develop Chief themselves: “/Do you
trust Chief?] I also wrote a lot of it, my own input into it, I know how
its structured, and I have experience writing [control] code and I know
we have good developers writing it” (P15). However, not everyone
felt this way, with one participant distrusting Chief’s Autocoder
specifically because it was built at The Center: ‘T don’t trust our in
house tools. I don’t trust the Chief Autocoder” (P8)

In contrast, our participants especially distrusted tools built by
Microsoft: “In general, I am less trusting of Microsoft tools” (P14), and:
‘[What tool don’t you trust as much?] Like, uh, any Microsoft tool. Like,
Word” (P11). Parts of Chief are developed through a collaboration

CHI ’21, May 8-13, 2021, Yokohama, Japan

with a university as a final project for Masters of Software Engi-
neering students, a fact mentioned with skepticism (?) by one of
our participants: “Chief Plus is developed by [colleague’s name] and
a sea of Masters students at [university]” (P10). While participants
spoke about the benefit of open source software having “many eyes”
on it in Section 5.3.1, another participant spoke about a potential
downside of not knowing the authors personally: “Its open source,
sometimes I think would someone put something bad in it? But, in
general, yes I trust GCC [a compiler]” (P14). In summary, participants
used their knowledge of software’s authorship to inform their trust
judgements about it.

5.3.3 Betrayal. Systems which introduced errors in an easy to
miss manner, likely to be caught by others (rather than the original
engineer) were trusted less. Because of the high stakes, one shot,
nature of the work The Center performs, the tools and systems
used often had the potential to damage our participants reputation,
thereby betraying their trust. For example, incorrectly interacting
with Chief’s Autocoder using MagicDraw could result in errors
which were easy to miss, and only likely to be caught by someone
else, but easily traceable to the original developer. MagicDraw ap-
peared to modify files when it shouldn’t, in a way that violated
our participant’s trust that it would not modify files autonomously
without user input: ‘T open up my MagicDraw doc, but I don’t save
it, yet GitHub reports the file has changed. And so in the background,
MagicDraw is saving stuff without telling you” (P7).

The Chief Plus Autocoder does not have a “spellchecker”, thus
propagated typos an engineer makes to places in the system which
might not be caught by that engineer, thus putting the engineer’s
reputation at risk: “Wait, I'm confused... Oh god! So if I miss type
something, the compiler just converts this directly into my XML!I miss
typed the word and it just jammed it into XML with no errors! It should
check! Someone needs to modify the compiler, so that it can catch
misspellings. Because the error will pop up in code you didn’t write!”
(P10). Similarly, another participant spoke about how MagicDraw
propagates engineer’s errors in a way that will only be caught late
in the development process, thus exposing their errors to others
and putting their reputation at risk: “If you do something wrong in
MagicDraw’s GUI, it generates a topology or a module XML which is
also slightly wrong. That wouldn’t be found until we actually try to
run the software on the testbed for testing” (P16).

5.3.4 Endorsement. Tools and systems which had been used or
verbally endorsed by engineer’s team members were trusted more,
possibly due to social proof [10]: “[Do you trust Chief?] Yes, I know
other people are using it. Talking about it with my group, every-
one’s using it, the community itself really helps” (P7). Participant 7
explained that when he was new to Chief, his peers helped him
learn to use Chief, but also to trust Chief. This is an instance of
“social proof”, a psychological phenomenon where people use the
behavior of others a cue for the appropriate way to behave in a sit-
uation [10]. Another participant provided an example of a negative
endorsement of the prototype Chief Plus’s “bear traps” conveyed
through both formal meetings and less formal rumors: “The rumors
are that there are a lot of bear traps [in Chief Plus] to tiptoe around.
[...] Sitting in meetings, I got the impression it was fragile, and that
there were issues that had to be sorted out” (P15). We note that social
Endorsement, or lack thereof, was also used to communicate other

CHI ’21, May 8-13, 2021, Yokohama, Japan

factors that can also be discovered individually such as Bugs (see
Sec 5.2.2).

5.4 Process Based

Trust was also given to a system through a formal trust-granting
process or routine that was part of The Center’s style of work. We
refer to this as process based trust.

5.4.1 Formally Tested. Systems that were tested more thoroughly
were more trusted. Participants reported knowing some parts of
Chief needed further testing before they could be fully trusted: “/Do
you trust Chief?] I mean, I think mostly? Although parts of it could
be better tested. [...] But large parts of it are thoroughly tested. There
are just some classes of bugs that just sit there until testing happens”
(P11). Another participant reported that insufficient testing is com-
pletely disqualifying from a trust perspective: ‘T don’t trust Chief’s
Autocoder. It hasn’t been tested as much as a real tool. We tend to
discount testing and such here” (P8).

5.4.2 Mission Proven. Systems which had served successfully on a
space mission (dubbed “Mission Proven”) were also more trusted.
This Mission Proven status carried revered importance for both
hardware and software components and systems in The Center.
Participants informally kept track of what components and systems
were Mission Proven. They reported trusting Chief more because
Chief’s auto-generated code had been Mission Proven on a previ-
ous satellite. This status is so important that it is one of the first
characteristics mentioned in materials promoting Chief.

When asked why participants trust Chief, participants often gave
the fact it was Mission Proven in a tone of voice that suggested
it was the only justification for their trust that was needed: “Yes,
we’ve successfully [used] Chief on several spacecraft” (P10) as one
example, and: “[Do you trust Chief?] Yes, I guess I do. Its flying on
[satellite name]” (P14) as another. Another participant described
this Mission Proven status in a genealogical sense: “[Do you trust
Chief?] Mostly yes ... because it has heritage, we’ve used it successfully
[in previous missions]” (P11), and other employees of The Center
would talk about processes and tools which are still used today
after successful use on many past missions.

5.4.3 Safe Zone. When components of systems were admitted
into a conventionally understood “safe zone”, they were trusted
much more than those which are not. Some components are con-
sidered generic and well tested enough to be considered “core” and
maintained by Chief’s creators themselves and are generally trusted
more, others are contributed by other teams who have used Chief in
the past and trusted less. Participants reported trusting components
inside the safe zone, and viewing other components as suspect: “So
Chief is two things: its a standard library and a framework. The frame-
work is rock solid, its been tried and testing. The standard library I
look at with skepticism except for core components. Some of the other
components, I don’t trust to be reliable [control] software” (P10). An-
other participant on the team responsible for Chief’s development
explained how his team has absorbed components from other teams
into this safe zone: “We’ve inherited components in other projects,
and reused them, and they have heritage” (P7). Another member of
Chief’s development team mentioned that components inside the
safe zone are more rigorously tested: “/Do you trust Chief?] I mean,

Widder, Dabbish, Herbsleb, Holloway and Davidoff

I think mostly. Although parts of it could be better tested, but large
parts of it are thoroughly tested” (P11).

5.4.4 Institutional Investment. The fact that The Center chose to
invest in Chief was a signal to engineers that it could be trusted.
The Center made investment decisions with a great deal of care
and study, because missions were often expensive and risky. Partic-
ipants saw funds invested in Chief as a form of official anointment
and strong indicator of trust. “Do you trust Chief? Yeah, It’s trusted
to run a 40 million dollar experimental [mission]” (P15). Participants
recognized both the dollar figure of this trust (“40 million”), and
the fact that this trust is potentially risky (“experimental”). How-
ever, another participant, said of the Chief Plus system: “Here’s the
problem at [The Center], we don’t have much to invest in these kind
of technologies” (P8), perhaps showing that he doesn’t think the
prototype Chief Plus system has yet been invested in enough by
The Center to merit his trust just yet.

6 DISCUSSION AND IMPLICATIONS

Our study has possible implications for further research on trust in
collaborative and creative autonomous systems, for software engi-
neering tool designers seeking to build tools their users trust, and
for organizations wanting to enable their members to appropriately
calibrate their trust in the tools they use.

6.1 Implications for Research on Trust in
Automated Tools: Trusting the
Collaboration, (not the System)

We observed engineers use Chief iteratively, re-running Chief, tun-
ing their input to iteratively refine output as they attempt to imple-
ment new ideas, change goals, or fix bugs. It is in this context that
we believe Chief is best viewed as a collaborator, and consequently,
that trust is best thought of as something the operator places in
the human-automated system collaboration, which includes
themselves, rather than trust being something an operator places
in Chief. We believe this conception of trust fits our context: the
software for one space mission at The Center can take a decade to
develop, launch, and maintain. We heard of decade long missions
having software mishaps repaired using some of the same tools
they were built with, so it is within this context that we believe en-
gineers instead assess their trust in their ability to work with Chief,
regardless of how goals may develop in the future, rather than their
trust in Chief to successfully complete a particular, preordained
goal. We believe that this conception of trust also fits our data:
for example, our participants often offer explanations relating to
their own ability to work with Chief as primary factors influencing
their trust, such as the length of time they’ve been working with
Chief, the extent to which the way they want to use Chief aligns
with their expectations and their ability to understand Chief and
its output. We believe this framing of collaborative trust can be
used to consider more influences on trust in future studies of cre-
ative, operator-autonomous system collaborations as they become
increasingly powerful and common as autonomous systems prolif-
erate knowledge work contexts. For example, Siedel et al.’s recent
line of work investigates how game designers used autonomous
tools to help design a virtual world, and how such tools enabled

Trust in Collaborative Automation in High Stakes Software Engineering Work

designers to create more complex games, emphasizing benefits of
repeated iteration and creativity these tools can enable [49-51]. As
autonomous systems support more open ended goals, trust will
increasingly depend on collaboration between the operator and
the system, which necessarily must be studied in context. Our
proposed framing contrasts with the papers reviewed in Hoff and
Bashir, which position the human operator as having a narrowly
scoped and known goal for their use of automation, with clearly
defined criteria for when and whether this goal has been achieved.
For example, combat identification aids, which help weapons op-
erators identify enemy targets, were the most commonly studied
system used in their review, are systems with a clearly defined goal,
and results can clearly be decided as either success or failure.

Separately, our study corroborates many experimental results
used in Hoff and Bashir’s model of trust human operators place in
automated systems, and our ethnographic approach allows us to
situate these factors within a real life socio-organizational context,
a need they recognize [23]. These include the length of exposure
operators have to the system [66], the system’s reputation [36],
nature and quality of feedback provided by the system [57], and the
transparency of the system [17]. Contradictorily, some work (i.e.,
[20, 46]) finds that trust in automation decreases as risk increases,
but other work suggests the reverse (i.e., [54]). Hoff and Bashir
state that future work is needed, but propose “under high risk
conditions, operators may have a tendency to reduce their reliance
on complex automation”, and in our high risk context we indeed
find that additional complexity, both in the way one must interact
with Chief and the output it generates, reduces trust.

6.2 Designing Trust-Supporting Organizations

Our ethnographic method revealed how a tool’s social context can
influence trust. Here we discuss how future work could examine
whether and how our results transfer to other organizations support
the transfer of trust judgements about autonomous tools which can
be trusted and those which cannot.

Our finding that endorsement (or lack thereof) influences trust
in Chief suggests that mechanisms to make known who uses what
tool, and what their experience was, is a way to help a tool’s new-
comers calibrate their trust, noting that past work has already noted
that the interchange of such experiences already affect tool adop-
tion [64]. Relatedly, our finding that the reputation of who built
a tool can influence trust suggests that organizations developing
tools for internal use may clearly identify who built what tool, and
what other tools those people made. We also observed that Chief’s
creators view their personal reputation is tied to that of Chief, so
making tool authorship visible may further incentivize the creation
of good tools.

Our finding that The Center’s institutional investment in Chief
positively impacts trust suggests that organizations may make
known to their members the approval process for adopting new
tools or software. For example, we observed that The Center sub-
jects new external tools to rigorously security vetting before allow-
ing their use internally, and exposing the criteria use for similar
vetting in other organizations may help increase members trust in
the vetted tool.

CHI ’21, May 8-13, 2021, Yokohama, Japan

Our Mission Proven result is particularly unique to context, but
other High Reliability Organizations can look for similar routines
and signals that trust was granted to a tool or system when it had
been used in previous missions without incident, and make these
apparent. However, given that HROs often defer to what has worked
in the past, this may lead to the limitation that new tools can’t get
adopted or they have to come up with other ways to *prove’ they
will work on a mission. We find that parts of Chief admitted to
a “safe zone” were trusted more than experimental components
which were not. This suggests a way in which organizations can
split parts of software they develop or tools they use into those
which are highly vetted, and those which are less, as a way to
preserve ability to experiment with new things while retaining
trust and high reliability.

6.3 Designing Trusted Software Engineering
Tools

To our knowledge, this is the first study on factors which influence
trust in software engineering tools. Since trust has been shown to
impact software engineering tool adoption [38, 56], further study
can examine whether and how our results may transfer to other
contexts to help software engineering tool designers evaluate and
improve their tool’s trustworthiness and adoption. Below, we dis-
cuss how providing visibility into their inner workings, improving
training and documentation to include the why not just the how,
publicly exposing known bugs, and highlighting when past experi-
ence may be out of date increased users’ trust in Chief.

Our study suggests that tools with easily understood internals,
for example, by open sourcing and documenting the code, may
be trusted more. However, companies may be reluctant to release
source code of proprietary algorithms but may risk being seen as
opaque and ethically questionable as a result [30], so future work
can examine ways to build trust by exposing as much of the inter-
nal workings of proprietary autonomous software tools without
revealing their source code. Additionally, our results suggest that
aligning with existing codified standards or expected norms may
help trust when such constraints prevent full transparency.

Our study suggests that training and documentation on how to
use tools are not enough: to trust the tool, software engineers also
expect to understand why by including the not just the rationale
for what they are told to do, but also why certain design decisions
were made, a result, suggesting that not only should automated
systems provide explanations for their behavior to incur trust [17],
but that their human creators must too. We note that other research
underscores the important of supporting “why” questions in de-
bugging [28], and that the structure of frameworks can support
debugging [12]. Crucially, our results also suggest that training
and documentation, when done right, can make up for trust lost
elsewhere, such as through overcomplexity.

Perhaps counter intuitively, our research suggests that the pres-
ence of Bugs in software engineering tools need not always have a
negative impact on trust: the surprise discovery of “unknown bugs”
negatively impact users’ trust, whereas a knowledge of Chief’s
deficiencies helped build trust. This aligns with research on inter-
personal trust which shows that surprise violation of expectations
by teammates adversely affected trust [1]. As a result, software

CHI ’21, May 8-13, 2021, Yokohama, Japan

engineering tool companies may consider ways to expose known
bugs to their users, such as making bug tracking dashboards public,
in order to build trust. We note that this is already common in
open source software, many of which have public lists of known
issues [4]. Studies on the trustworthiness of open source software
in comparison to proprietary software find that reliability and func-
tionality are the two most frequently cited factors affecting trust-
worthiness [13], and there have even been attempts to build tools
to measure the trustworthiness of open source software compo-
nents [25]. This concurs with our observations that participants
often trust open source software, which have more users to find
bugs thus improving perceived reliability (see 5.3.1) and provide
visibility into the source code (see 5.1.1).

Software tools designed for other software engineers are often
less than usable [59], and our study underscores the importance of
making using such tools intuitive through its impact on trust. For
example, our participants performed “rituals” (see 5.2.4) to achieve
desired functionality, and others found cases where they had to rely
on a “Sixth Sense” to use Chief correctly. Identifying, documenting,
and ultimately fixing these issues can improve tool trust.

Our research shows that trust tended to increase as users became
more experienced. However, research on other frequently changing
frameworks found past experience can lead users to misdiagnose
errors due to previous experience, with one user stating past expe-
rience should not be trusted [12]. Thus, to ensure the positive trust
outcomes as users become more experienced that we observe, tool
designers should clearly mark when changes between tool versions
require different use.

7 CONCLUSION

We conducted a ten-week multi-method ethnographic study of the
factors which influence users’ trust as they collaborate with an
autonomous tool in a high stakes context. We report how trans-
parency, usability, social context, and process based trust factors
are situated in context.

We discuss how our observations lead us to frame trust as a
quality the operator places in their collaboration with the auto-
mated system, and we outline implications of this framing and
other results for researchers studying trust in autonomous systems,
software engineering tool designers, and organizations conducting
high stakes work with these tools.

ACKNOWLEDGMENTS

We thank our participants and the leaders of Chief’s development
for enabling this study and sharing their experiences in the spirit
of improving Chief. We thank our reviewers from successive sub-
missions, our shepherd, Julie and John Widder, Pranav Khadpe, and
Anastasia Sosnovskikh for their helpful feedback to improve our
paper. The research was carried out by the Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration (80NM0018D0004).

REFERENCES

[1] Ban Al-Ani, Erik Trainer, David Redmiles, and Erik Simmons. 2012. Trust and
surprise in distributed teams: towards an understanding of expectations and
adaptations. In Proceedings of the 4th international conference on Intercultural
Collaboration. 97-106.

[2] Rosaline Barbour. 2008. Doing focus groups. Sage.

Widder, Dabbish, Herbsleb, Holloway and Davidoff

[3] Reuben Binns, Max Van Kleek, Michael Veale, Ulrik Lyngs, Jun Zhao, and Nigel
Shadbolt. 2018. "It’s Reducing a Human Being to a Percentage’: Perceptions of
Justice in Algorithmic Decisions. In Proc. Conf. Human Factors in Computing
Systems (CHI). ACM, 377.

[4] Tegawendé F Bissyandé, David Lo, Lingxiao Jiang, Laurent Réveillere, Jacques
Klein, and Yves Le Traon. 2013. Got issues? who cares about it? a large scale inves-
tigation of issue trackers from github. In 2013 IEEE 24th international symposium
on software reliability engineering (ISSRE). IEEE, 188-197.

[5] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. (2012).

[6] Frank J. Budinsky, Marilyn A. Finnie, John M. Vlissides, and Patsy S. Yu. 1996.
Automatic code generation from design patterns. IBM systems Journal 35, 2
(1996), 151-171.

[7] James G Casler. 2014. Revisiting NASA as a high reliability organization. Public
Organization Review 14, 2 (2014), 229-244.

[8] Maria Christakis and Christian Bird. 2016. What developers want and need from
program analysis: an empirical study. In Proc. International Conf. on Automated
Software Engineering (ASE). IEEE, 332-343.

[9] Marlys K Christianson, Kathleen M Sutcliffe, Melissa A Miller, and Theodore J
Iwashyna. 2011. Becoming a high reliability organization. Critical care 15, 6
(2011), 314.

[10] Robert B Cialdini. 1993. Influence: The psychology of persuasion. (1993).

[11] David M Cohen, Siddhartha R Dalal, Jesse Parelius, and Gardner C Patton. 1996.
The combinatorial design approach to automatic test generation. IEEE software
13, 5 (1996), 83-88.

[12] Zack Coker, David Gray Widder, Claire Le Goues, Christopher Bogart, and Joshua

Sunshine. 2019. A qualitative study on framework debugging. In 2019 IEEE

International Conference on Software Maintenance and Evolution (ICSME). IEEE,

568-579.

Vieri Del Bianco, Luigi Lavazza, Sandro Morasca, and Davide Taibi. 2011. A

survey on open source software trustworthiness. IEEE software 28, 5 (2011),

67-75.

[14] Munjal Desai, Kristen Stubbs, Aaron Steinfeld, and Holly Yanco. 2009. Creating
trustworthy robots: Lessons and inspirations from automated systems. (2009).

[15] Premkumar Devanbu, Thomas Zimmermann, and Christian Bird. 2016. Belief
& evidence in empirical software engineering. In Proc. International Conf. on
Software Engineering (ICSE). IEEE, 108-119.

[16] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk. Pearson Education.

[17] Mary T Dzindolet, Scott A Peterson, Regina A Pomranky, Linda G Pierce, and
Hall P Beck. 2003. The role of trust in automation reliance. Human-Computer
Studies 58, 6 (2003), 697-718.

[18] Motahhare Eslami, Sneha R Krishna Kumaran, Christian Sandvig, and Karrie
Karahalios. 2018. Communicating algorithmic process in online behavioral
advertising. In Proc. Conf. Human Factors in Computing Systems (CHI). ACM, 432.

[19] Motahhare Eslami, Kristen Vaccaro, Min Kyung Lee, Amit Elazari Bar On, Eric

Gilbert, and Karrie Karahalios. 2019. User Attitudes towards Algorithmic Opacity

and Transparency in Online Reviewing Platforms. In Proc. Conf. Human Factors

in Computing Systems (CHI). ACM, 494.

Neta Ezer, Arthur D Fisk, and Wendy A Rogers. 2008. Age-related differences

in reliance behavior attributable to costs within a human-decision aid system.

Human Factors 50, 6 (2008), 853-863.

Peter A Hancock, Deborah R Billings, Kristin E Schaefer, Jessie YC Chen, Ewart J

De Visser, and Raja Parasuraman. 2011. A meta-analysis of factors affecting trust

in human-robot interaction. Human factors 53, 5 (2011), 517-527.

Frederick Hayes-Roth. 1985. Rule-based systems. Commun. ACM 28, 9 (1985),

921-932.

[23] Kevin Anthony Hoff and Masooda Bashir. 2015. Trust in automation: Integrating

empirical evidence on factors that influence trust. Human Factors 57, 3 (2015),

407-434.

Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and

Hanna Wallach. 2019. Improving fairness in machine learning systems: What

do industry practitioners need?. In Proc. Conf. on Human Factors in Computing

Systems (CHI). ACM, 600.

[25] Anne Immonen and Marko Palviainen. 2007. Trustworthiness evaluation and
testing of open source components. In Seventh International Conference on Quality
Software (QSIC 2007). IEEE, 316-321.

[26] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.

2013. Why don’t software developers use static analysis tools to find bugs?. In

Proc. International Conf. on Software Engineering (ICSE). IEEE Press, 672-681.

René F Kizilcec. 2016. How much information?: Effects of transparency on trust

in an algorithmic interface. In Proc. Conf. Human Factors in Computing Systems

(CHI). ACM, 2390-2395.

Andrew J Ko and Brad A Myers. 2004. Designing the whyline: a debugging

interface for asking questions about program behavior. In Proceedings of the

SIGCHI conference on Human factors in computing systems. 151-158.

Ugur Kuter and Cemal Yilmaz. 2001. Survey methods: Questionnaires and inter-

views. Choosing Human-Computer Interaction (HCI) Appropriate Research Methods

(2001).

=
)

[20

[21

~
5,

[24

~
=

[28

[29

Trust in Collaborative Automation in High Stakes Software Engineering Work

[30]

[31

[32]

[33

™
&

[35]

[36

[37]

[38

[39]

[40

[41

[42

[43]

[44

[45]

[46

[47

Kyriakos Kyriakou, Pinar Barlas, Styliani Kleanthous, and Jahna Otterbacher.
2019. Fairness in proprietary image tagging algorithms: A cross-platform audit
on people images. In Proceedings of the International AAAI Conference on Web
and Social Media, Vol. 13. 313-322.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011.
Genprog: A generic method for automatic software repair. IEEE Transactions on
Software Engineering 38, 1 (2011), 54-72.

John D Lee and Katrina A See. 2004. Trust in automation: Designing for appro-
priate reliance. Human Factors 46, 1 (2004), 50-80.

Marko Leppénen, Simo Mékinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen,
Mika V Méntyl4, and Tomi Mannisté. 2015. The highways and country roads to
continuous deployment. Ieee software 32, 2 (2015), 64-72.

Yvonna S Lincoln, Susan A Lynham, and Egon G Guba. 2011. Paradigmatic
controversies, contradictions, and emerging confluences, revisited. The Sage
handbook of qualitative research 4 (2011), 97-128.

Howard Lune and Bruce L Berg. 2017. Qualitative research methods for the social
sciences. Pearson.

Poornima Madhavan and Douglas A Wiegmann. 2007. Effects of information
source, pedigree, and reliability on operator interaction with decision support
systems. Human Factors 49, 5 (2007), 773-785.

Gail C Murphy and Emerson Murphy-Hill. 2010. What is trust in a recommender
for software development?. In Proc. Workshop on Recommendation Systems for
Software Engineering. ACM, 57-58.

Emerson Murphy-Hill, Gail C Murphy, Joanna McGrenere, et al. 2015. How Do
Users Discover New Tools in Software Development and Beyond? Computer
Supported Cooperative Work (CSCW) 24, 5 (2015), 389-422.

Emerson Murphy-Hill, Chris Parnin, and Andrew P Black. 2011. How we refactor,
and how we know it. Transactions on Software Engineering 38, 1 (2011), 5-18.
Brad A Myers, Amy] Ko, Thomas D LaToza, and YoungSeok Yoon. 2016. Pro-
grammers are users too: Human-centered methods for improving programming
tools. Computer 49, 7 (2016), 44-52.

David J Niedober, Nhut T Ho, Gina Masequesmay, Kolina Koltai, Mark Skoog,
Artemio Cacanindin, Walter Johnson, and Joseph B Lyons. 2014. Influence of
cultural, organizational and automation factors on human-automation trust: A
case study of Auto-GCAS engineers and developmental history. In International
Conf. on Human-Computer Interaction. Springer, 473-484.

Steffen Olbrich, Daniela S Cruzes, Victor Basili, and Nico Zazworka. 2009. The
evolution and impact of code smells: A case study of two open source systems.
In 2009 3rd international symposium on empirical software engineering and mea-
surement. IEEE, 390-400.

Raja Parasuraman and Christopher A Miller. 2004. Trust and etiquette in high-
criticality automated systems. Commun. ACM 47, 4 (2004), 51-55.

Raja Parasuraman, Robert Molloy, and Indramani L Singh. 1993. Performance
consequences of automation-induced’complacency’. The International Journal of
Aviation Psychology 3, 1 (1993), 1-23.

Emilee Rader, Kelley Cotter, and Janghee Cho. 2018. Explanations as mecha-
nisms for supporting algorithmic transparency. In Proc. Conf. Human Factors in
Computing Systems (CHI). ACM, 103.

Bako Rajaonah, Nicolas Tricot, Francoise Anceaux, and Patrick Millot. 2008. The
role of intervening variables in driver—-ACC cooperation. Human-Computer
Studies 66, 3 (2008), 185-197.

Karlene H Roberts and Gina Gargano. 1989. Managing a high reliability orga-
nization: A case for interdependence. Managing complexity in high technology

CHI 21, May 8-13, 2021, Yokohama, Japan

industries: Systems and people. New ...

Gene I Rochlin, Todd R La Porte, and Karlene H Roberts. 1987. The self-designing
high-reliability organization: Aircraft carrier flight operations at sea. Naval War
College Review 40, 4 (1987), 76-92.

Stefan Seidel, Nicholas Berente, and John Gibbs. 2019. Designing with Au-
tonomous Tools: Video Games, Procedural Generation, and Creativity. (2019).
Stefan Seidel, Nicholas Berente, Aron Lindberg, Kalle Lyytinen, and Jeffrey V
Nickerson. 2018. Autonomous tools and design: a triple-loop approach to human-
machine learning. Commun. ACM 62, 1 (2018), 50-57.

Stefan Seidel, Nicholas Berente, Benoit Martinez, Aron Lindberg, Kalle Lyytinen,
and Jeffrey V Nickerson. 2018. Autonomous tools in system design: Reflective
practice in Ubisofts Ghost Recon Wildlands project. Computer 51, 10 (2018),
16-23.

Helen Sharp, Yvonne Dittrich, and Cleidson RB De Souza. 2016. The role of
ethnographic studies in empirical software engineering. IEEE Transactions on
Software Engineering 42, 8 (2016), 786-804.

James P Spradley. 2016. Participant observation. Waveland Press.

Charlene K Stokes, Joseph B Lyons, Kenneth Littlejohn, Joseph Natarian, Ellen
Case, and Nicholas Speranza. 2010. Accounting for the human in cyberspace:
Effects of mood on trust in automation. In Proc. Symposium on Collaborative
Technologies and Systems. IEEE, 180-187.

Michael Veale, Max Van Kleek, and Reuben Binns. 2018. Fairness and account-
ability design needs for algorithmic support in high-stakes public sector decision-

making. In Proc. Conf. Human Factors in Computing Systems (CHI). ACM, 440.
Petcharat Viriyakattiyaporn. 2009. An active help system to improve program

navigation. Ph.D. Dissertation. University of British Columbia.

Lu Wang, Greg A Jamieson, and Justin G Hollands. 2011. The effects of design
features on users’ trust in and reliance on a combat identification system. In Proc.
Human Factors and Ergonomics Society Annual Meeting, Vol. 55. SAGE Publications
Sage CA: Los Angeles, CA, 375-379.

Robert Philip Weber. 1990. Basic content analysis. Number 49. Sage.

Thomas Weber, Alois Zoitl, and Heinrich Hufimann. 2019. Usability of Develop-
ment Tools: A CASE-Study. In 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE,
228-235.

Karl E Weick. 1987. Organizational culture as a source of high reliability. Califor-
nia management review 29, 2 (1987), 112-127.

Julie White, Sarah Drew, and Trevor Hay. 2009. Ethnography versus case study.
Qualitative Research Journal 9, 1 (2009), 18—-27.

David Gray Widder, Michael Hilton, Christian Késtner, and Bogdan Vasilescu.
2019. A conceptual replication of continuous integration pain points in the
context of Travis CIL In Proc. European Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE). ACM, 647-658.

Jerry W Willis, Muktha Jost, and Rema Nilakanta. 2007. Foundations of qualitative
research: Interpretive and critical approaches. Sage.

Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social influences
on secure development tool adoption: why security tools spread. In Proceedings
of the 17th ACM conference on Computer supported cooperative work & social
computing. 1095-1106.

Robert K Yin. 2017. Case study research and applications: Design and methods.
Sage publications.

Nirit Yuviler-Gavish and Daniel Gopher. 2011. Effect of descriptive information
and experience on automation reliance. Human Factors 53, 3 (2011), 230-244.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Trust in Algorithms and Automation
	2.2 Trust in Software Engineering Tools

	3 Setting
	3.1 The Center as an Extreme Case
	3.2 Chief and its Autocoder

	4 Methods
	4.1 Recruitment
	4.2 Semi-Structured Interviews
	4.3 Think Aloud User Studies
	4.4 Chief Workshop & Group Interviews
	4.5 Participant Observation
	4.6 Data Analysis

	5 Results: What Factors Mediate Trust in Chief?
	5.1 Transparency
	5.2 Usability
	5.3 Social Context
	5.4 Process Based

	6 Discussion and Implications
	6.1 Implications for Research on Trust in Automated Tools: Trusting the Collaboration, (not the System)
	6.2 Designing Trust-Supporting Organizations
	6.3 Designing Trusted Software Engineering Tools

	7 Conclusion
	Acknowledgments
	References

